• Title/Summary/Keyword: hydrolyzates

Search Result 93, Processing Time 0.02 seconds

Optimization of an Extracellular Dextranase Production from Lipomyces starkeyi KCTC 17343 and Analysis of Its Dextran Hydrolysates (Lipomyces starkeyi KCTC 17343에 의한 extracellular dextranase 최적생산과 덱스트란 hydrolysates 분석)

  • Chang, Yoon-Hyuck;Yeom, Joong-Hyun;Jung, Kyung-Hwan;Chang, Byung-Chul;Shin, Jung-Hee;Yoo, Sun-Kyun
    • Journal of Life Science
    • /
    • v.19 no.4
    • /
    • pp.457-461
    • /
    • 2009
  • We optimized dextranase culture conditions by batch fermentation using Lipomyces starkeyi KCTC 17343. Furthermore, dextranase was purified by an ultra-membrane, and then dextran hydrolyzates were characterized. Cell growth and dextranase production varied depending on the initial culture pH and temperature. The conditions of optimal dextranase production were met in a pH range of 4-5 and temperature between $25-30^{\circ}C$. At optimal fermentation conditions, total enzyme activity and specific enzyme activity were about 4.85 IU/ml and 0.79 IU/g cells, respectively. The specific growth rate was examined to be $0.076\;hr^{-1}$. The production of dextranase in culture broth was very stably maintained after mid-log phase of growth. The enzyme hydrolyzed dextran into DP (degree of polymerization) 2 to 8 oligodextran series. Analysis of the composition of hydrolysates suggested that the enzyme produced is an endo-dextranase.

Effect of Enzymatic Hydrolysis by Proteases on Antioxidant Activity of Chungkukjang (단백질 분해 효소 처리가 청국장의 항산화 활성에 미치는 영향)

  • Park, Min-Kyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.2
    • /
    • pp.327-333
    • /
    • 2011
  • Chungkukjang and soybean powder were enzymatically hydrolyzed with 20, 100 and 500 mAU of 3 commercially available proteases (alcalase 2.4L, protamex and neutrase 0.8L) at $50^{\circ}C$ for 120 min. The degree of hydrolysis and antioxidant activities of hydrolysates were comparably evaluated. Alcalase and protamex yielded higher content of peptide compared to neutrase in both Chungkukjang and soybean powder hydrolyzed samples. Both Chungkukjang and soybean hydrolysates showed also greater increases of antioxidant activities compared to those prepared with neutrase. The rates of increment of DPPH, ABTS and hydroxyl radical scavenging activities were similar between Chungkukjang and soybean powder hydrolyzates. These results show that alcalase and protamex are not specific for Chungkukjang but enhance its antioxidant activity.

Effect of Ginseng Saponin on Bacterial α-Amylase Activity (인삼(人蔘) Saponin이 세균(細菌) α-Amylase 활성(活性)에 미치는 영향(影響))

  • Do, Jae Ho;Kim, Sang Dal;Joo, Hyun Kyu
    • Microbiology and Biotechnology Letters
    • /
    • v.13 no.1
    • /
    • pp.7-11
    • /
    • 1985
  • In order to investigate the biological activity of ginseng saponins, the effects of ginseng saponins on the reaction catalyzed by bacterial a-amylase were studied and the results obtained were summerized as follows. Bacterial ${\alpha}$-amylase activity was increased by the addition of protopanaxadiol (diol), protopanaxatriol (triol) and total saponin. Preincubation of ${\alpha}$-amylase with diol saponin at $40^{\circ}C$ for 3 min increased ${\alpha}$-amylase activity to the degree of 120%. In the protective effect on the heat denaturation of the enzyme, triol saponin protected the heat denaturation for 5 min at $60^{\circ}C$, but diol saponin accelerated the heat denaturation. The hydrolyzates of diol and triol saponin increased the enzyme activity more than the intact diol and triol saponin. In the catalysis system of bacterial ${\alpha}$-amylase, the addition of diol and triol saponin reduced the substrate inhibition in the presence of high concentration of the substrate.

  • PDF

Xylanase Production from Bacillus safensis Isolate by Xylan or Xylan Hydrolyzed Products (Xylan과 Xylan 가수분해물에 의한 Bacillus safensis 분리균의 Xylanase 생산)

  • Jin, Hyun Kyung;Yoon, Ki-Hong
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.3
    • /
    • pp.324-332
    • /
    • 2016
  • A bacterial strain capable of hydrolyzing xylan was isolated from fermented soybean paste obtained from a domestic Buddhist temple, using enrichment culture with rice straw as a carbon source. The isolate, named YB-1301, was identified as Bacillus safensis on the basis of its DNA gyrase subunit B gene (gyrB) sequence. The xylanase productivity of strain YB-1301 was drastically increased when it was grown in the presence of wheat bran or various xylans. In particular, the maximum xylanase productivity reached above 340 U/ml in the culture filtrate from LB broth supplemented with only birchwood xylan at shake-flask level. The xylanase production was significantly induced by xylans at the stationary growth phase in LB medium containing xylan, whereas only a small amount of xylanase was constitutively produced from cells grown in LB medium with no addition of xylan. Furthermore, xylanase biosynthesis was induced more rapidly by the enzymatically hydrolyzed products of xylan than by the non-hydrolyzed xylan. In addition, the xylanase in the culture filtrate of B. safensis YB-1301 was found to have optimal activity at 55℃ and pH 6.5–7.0.

Enzymatic Properties of Cyclodextrin Glycosyltransferase from Alkalophilic Bacillus sp. YC-335 (호알칼리성 Bacillus sp.가 생산하는 Cyclodextrin Glycosyltransferase의 효소적 특성)

  • Jung, Yong-Joon;Jung, Myeong-Ho;Yu, Ju-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.93-97
    • /
    • 1991
  • The enzymatic properties of purified CGTase from alkalophilic Bacillus sp. YC-335 have been examined. Apparent Vmax values of the enzyme in transferring glycosyl residues ${\alpha}-,\;{\beta}-and\;{\gamma}-cyclodextrin(CD)$ to sucrose were $16.13,\;21.8\;and\;9.8{\mu}moles/min/mg\;protein$, respectively and Km values of the corresponding CD were 1.68, 0.33 and 0.37 mM, respectively. A number of saccharides, specially starch hydrolyzates such as glucose and maltose, could activate the dextrinizing activity of the enzym. However, the dextrinizing activity was inhibited by ${\beta}-CD$. It was found from Lineweaver-Burk plot that the inhibition of CGTase by ${\beta}-CD$ was noncompetitive. High performance liquid chromatographic analysis showed that the enzyme has three kinds of activity ; transglycosylation and disproportionation as well as cyclization.

  • PDF

Intergeneric Protoplast Fusion beween Candida sp. KM-09 and Saccharumyces cerevisiue (Candida sp. KM-09와 Saccharomyces cerevisiae의 이속간의 원형질체 융합)

  • 문종상;고학룡;심기환;성낙계
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.4
    • /
    • pp.325-330
    • /
    • 1991
  • In order to develop yeast strains which can effectively produce ethanol from cellulosic hydrolyzates, protoplast fusion between Candida sp. KM-09-135 and Saccharomyces cweoisiue SM-07 was carried out and obtained the excellent fusant KMS-23. Fusant KMS-23 showed the optimal growth temperature and ethanol productivity at $37^{\circ}C$, and assimilated xylose, cellobiose, maltose and raffinose as fermentative sugars. Cell size of the fusant was about 1.2 times greater than that of KM-09-135 and 1.5 times SM-07. DNA content of fusant was 1.3 times higher than that of SM-07 and similar with KM-09-135. Fusant KMS-23 produced 2.57% (v/v) ethanol from saccharified wheat bran containing 6.44% (w/v) of reducing sugar, which was 1.3 times higher than parent strains under the same conditions.

  • PDF

Production and Characterization of New Structured-oligosaccharides from Mixed-enzyme of Dextransucrase and ${\alpha}$-amylase (Dextrnasucrase와 ${\alpha}$-amylase의 혼합효소를 이용한 새로운 구조의 올리고당 생산 및 특성 연구)

  • Lee, In-Su;Kim, Do-Man;Chang, Pahn-Shick
    • KSBB Journal
    • /
    • v.14 no.6
    • /
    • pp.707-712
    • /
    • 1999
  • We have produced new-structured oligosaccharides using mixed-enzyme reactor of dextransucrase from Leuconostoc mesenterides B-512FMCM and ${\alpha}$-amylase. When the concentrations of sucrose and starch were 10%(w/v) and 5%(w/v), respectively, the maximum yield of oligosaccharides with both dextransucrase(100U) and ${\alpha}$-amylase(1000U) was 66.4%. The activity of dextransucrase in mixed-enzyme reactor was increased about 2.5 times by acceptor reaction with starch hydrolyzates. As the activities of dextransucrase:${\alpha}$-amylase were increased from 20U:200U to 500U:5000U, the amount of polymer was increased and the yield of oligosaccharides was decreased. By the addition of sucrose into mixed-enzyme reactor following the prehydrolysis of starch with ${\alpha}$-amylase, the yield was increased up to 12% compared with that of mixed-enzyme reactor without the addition of starch hydrolyzate. New structured-oligosaccharides showed heat resistance up to 140$^{\circ}C$ and was stable in acidic condition at pH 3~6.

  • PDF

Characteristics and Action Pattern of Alikaline Lipase from Serratia liquefaciens AL-11 (Serratia liquefaciens AL-11이 생산하는 Alkaline Lipase의 특성 및 작용양상)

  • Choi, Cheong;Kim, Tae-Wan;Ahn, Bong-Jeon;Kim, Yung-Hwal;Son, Jun-Ho;Kim, Sung;Choi, Hee-Jin
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.1
    • /
    • pp.87-91
    • /
    • 1996
  • The optimum temperature and pH for the enzyme activity were 45$^{\circ}C$ and 10.0, respectively. The enzyme was stable in a pH range of 5 to 10, and 62% of its activity was lost on heat treatment of 60$^{\circ}C$ for 20 min. The activity of the purified enzyme was inhibited by $Fe^{2+},\;Zn^{2+}\;and\;Pb^{2+}$, and slightly activated by $Mn^{2+}\;and\;Ca^{2+}$. ${\gamma}$-Chloromercuribenzoic acid, 2,4-dinitrophenol and $H_{2}O_{2}$ did not show inhibitroy effect on the lipolytic activity of the alkaline lipase but ethylenediaminetetraacetic acid inhibited the enzyem activity. This suggested that the enzyme have metal group in its active site. Sodium salts of bile acids stimulated the enzyme activity. Analysis of hydrolyzates of olive oil after the reaction revealed that Serratia liquefaciens AL-11 produced non-specific lipolytic enzyme.

  • PDF

Kinetic Study of Xylan Hydrolysis and Decomposition in Concentrated Sulfuric Acid Hydrolysis Process by $^1H$-NMR Spectroscopy ($^1H$-NMR에 의한 Xylan의 황산가수분해 과정에서 나타나는 반응 동력학 연구)

  • Cho, Dae-Haeng;Kim, Yong-Hwan;Kim, Byung-Ro;Park, Jong-Moon;Sung, Yong-Joo;Shin, Soo-Jeong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.3
    • /
    • pp.52-58
    • /
    • 2011
  • Proton-NMR spectroscopic method was applied to kinetic study of concentrated sulfuric acid hydrolysis reaction, especially focused on 2nd step of acid hydrolysis with deferent reaction time and temperature as main variables. Commercial xylan extracted from beech wood was used as model compound. In concentrated acid hydrolysis, xylan was converted to xylose, which is unstable in 2nd hydrolysis condition, which decomposed to furfural or other reaction products. Without neutralization steps, proton-NMR spectroscopic analysis method was valid for analysis of not only monosaccharide (xylose) but also other reaction products (furfural and formic acid) in acid hydrolyzates from concentrated acid hydrolysis of xylan, which was the main advantages of this analytical method. Higher temperature and longer reaction time at 2nd step acid hydrolysis led to less xylose concentration in xylan acid hydrolyzate, especially at $120^{\circ}C$ and 120 min, which meant hydrolyzed xylose was converted to furfural or other reaction products. Loss of xylose was not match with furfural formation, which meant part of furfural was degraded to other undetected compounds. Formation of formic acid was unexpected from acidic dehydration of pentose, which might come from the glucuronic acid at the side chain of xylan.

Effect of Surface Hydrophobicity of Soybean Peptides on the Concentration of Serum Cholesterol and Fecal Steroid Excretion in Rats (대두 펩타이드의 표면소수도가 흰쥐의 혈청 콜레스테롤 농도 및 분변 스테로이드의 배설량에 미치는 영향)

  • Han, Eung-Soo;Lee, Hyong-Joo;Shon, Dong-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.571-575
    • /
    • 1993
  • Effect of surface hydrophobicity of soybean peptides on serum cholesterol in rats was investigated. Soybean protein(ISP), casein(CNP), and their peptic hydrolyzates fractionated by acid precipitations (SHT, SH8, SH6, SH4, CHT, CH6, CH5, CH4) were fed to rats and the concentration of serum cholesterol and the fecal steroid excretion were measured. And surface hydrophobicities of the peptide fractions were measured by determining by the ANS flourescence intensity and SDS binding capacity. It was found that the higher the surface hydrophobicity of peptides was, the more the fecal steroids excreted(r=0.801) and the lower the concentration of serum cholesterol became(r=-0.868). However, there was no relationship between SDS surface hydrophobicity and fecal steroids or serum cholesterol. ANS surface hydrophobicity of soybean protein was increased by enzymatic hydrolysis. These results suggest that high surface hydrophobicity of peptides formed during digestion is responsible for the hypocholestrolemic effect of soybean protein through the hydrophobic interaction between the peptides and bile salts in rats.

  • PDF