• Title/Summary/Keyword: hydrolysis yield

Search Result 419, Processing Time 0.025 seconds

Alkaline Peroxide Pretreatment of Waste Lignocellulosic Sawdust for Total Reducing Sugars

  • Satish Kumar Singh;Sweety Verma;Ishan Gulati;Suman Gahlyan;Ankur Gaur;Sanjeev Maken
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.412-418
    • /
    • 2023
  • The surge in the oil prices, increasing global population, climate change, and waste management problems are the major issues which have led to the development of biofuels from lignocellulosic wastes. Cellulosic or second generation (2G) bioethanol is produced from lignocellulosic biomass via pretreatment, hydrolysis, and fermentation. Pretreatment of lignocellulose is of considerable interest due to its influence on the technical, economic and environmental sustainability of cellulosic ethanol production. In this study, furniture waste sawdust was subjected to alkaline peroxide (H2O2) for the production of reducing sugars. Sawdust was pretreated at different concentrations from 1-3% H2O2 (v/v) loadings at a pH of 11.5 for a residence time of 15-240 min at 50, 75 and 90 ℃. Optimum pretreatment conditions, such as time of reaction, operating temperature, and concentration of H2O2, were varied and evaluated on the basis of the amount of total reducing sugars produced. It was found that the changes in the amount of lignin directly affected the yield of reducing sugars. A maximum of 50% reduction in the lignin composition was obtained, which yielded a maximum of 75.3% total reducing sugars yield and 3.76 g/L of glucose. At optimum pretreatment conditions of 2% H2O2 loading at 75 ℃ for 150 min, 3.46 g/L glucose concentration with a 69.26% total reducing sugars yield was obtained after 48 hr. of the hydrolysis process. Pretreatment resulted in lowering of crystallinity and distortion of the sawdust after the pretreatment, which was further confirmed by XRD and SEM results.

Optimization of Alcalase for Krill Byproduct Hydrolysis and Antioxidative Activities by Response Surface Methodology

  • Kim, Kyoung-Myo;Lee, Da-Sun;Nam, Min-Hee;Yoo, Hong-Seok;Kim, Seon-Bong;Chun, Byung-Soo;Lee, Yang-Bong
    • Preventive Nutrition and Food Science
    • /
    • v.15 no.4
    • /
    • pp.316-321
    • /
    • 2010
  • Krill byproduct was hydrolyzed with Alcalase 2.4L to produce functional ingredients for high antioxidative activities against 1,1-dimethyl-2-picryl-hydrazyl (DPPH) radical and Fe. The objective of this study was to investigate the optimum condition for degree of hydrolysis and antioxidative activity of enzymatic hydrolysate produced with the commercial Alcalase using response surface methodology (RSM) with a central composite rotatable design (CCRD). The ranges of independent variables were pH 7.6~10.4 for initial pH and $50.9{\sim}79.1^{\circ}C$ for hydrolysis temperature and their dependent variables were degree of hydrolysis, Brix, amount of phenolic compounds, DPPH-scavenging activity and Fe-chelating activity. RSM with CCRD was well designed to investigate the optimum condition for functional ingredients with high antioxidative activities using Alcalase 2.4L because of their high $R^2$ values of the range of 0.93~0.99 except the $R^2$ value of 0.50 for the amount of total phenolic compounds. The optimum hydrolysis conditions were pH 9.5 and $62^{\circ}C$ for degree of hydrolysis (DH) and pH 9.1 and $64^{\circ}C$ for DPPH-scavenging activity by response surface methodology. The yield of DH and DPPH-scavenging activity were $14.1{\pm}0.5%$ and $10.5{\pm}0.2%$, respectively. It is advantageous to determine the optimum hydrolysis conditions of krill and its by-products for the creation of different kinds of food products, as well as to increase the usage of marine protein sources.

Development of Combined Method for Extraction of Sea Tangle (다시마의 효과적 추출을 위한 종합적인 추출방법의 개발)

  • Kim, Woo-Jung;Lee, Jung-Kun;Chang, Young-Sang
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.51-56
    • /
    • 1994
  • Development for extraction method of sea tangle was investigated with addition of sucrose, NaCl, EDTA-2Na, SHMP, and hydrolysis with commercial polysaccharide hydrolyzing enzymes. The total solids and protein yields were significantly increased by enzymatic hydrolysis or addition of NaCl and EDTA-2Na during boiling. The extract prepared by enzymatic hydrolysis followed by 2 hrs of boiling in 1.5% NaCl solution was significantly improved in solids and protein yield from 24.1% and 13.9% of 2 hrs of water boiling to 44.6% and 32.2%, respectively. The combined method increased the amino-nitrogen content but reduced the turbidity and viscosity. Extracts with a high intensity of total and seaweed-like taste as revealed by sensory evalution were obtained by combined method.

  • PDF

Enzymatic formation of compound-K from ginsenoside Rb1 by enzyme preparation from cultured mycelia of Armillaria mellea

  • Upadhyaya, Jitendra;Kim, Min-Ji;Kim, Young-Hoi;Ko, Sung-Ryong;Park, Hee-Won;Kim, Myung-Kon
    • Journal of Ginseng Research
    • /
    • v.40 no.2
    • /
    • pp.105-112
    • /
    • 2016
  • Background: Minor saponins or human intestinal bacterial metabolites, such as ginsenosides Rg3, F2, Rh2, and compound K, are more pharmacologically active than major saponins, such as ginsenosides Rb1, Rb2, and Rc. In this work, enzymatic hydrolysis of ginsenoside Rb1 was studied using enzyme preparations from cultured mycelia of mushrooms. Methods: Mycelia of Armillaria mellea, Ganoderma lucidum, Phellinus linteus, Elfvingia applanata, and Pleurotus ostreatus were cultivated in liquid media at $25^{\circ}C$ for 2 wk. Enzyme preparations from cultured mycelia of five mushrooms were obtained by mycelia separation from cultured broth, enzyme extraction, ammonium sulfate (30-80%) precipitation, dialysis, and freeze drying, respectively. The enzyme preparations were used for enzymatic hydrolysis of ginsenoside Rb1. Results: Among the mushrooms used in this study, the enzyme preparation from cultured mycelia of A. mellea (AMMEP) was found to convert ginsenoside Rb1 into compound K with a high yield, while those from G. lucidum, P. linteus, E. applanata, and P. ostreatus produced remarkable amounts of ginsenoside Rd from ginsenoside Rb1. The enzymatic hydrolysis pathway of ginsenoside Rb1 by AMMEP was $Rb1{\rightarrow}Rd{\rightarrow}F2{\rightarrow}$ compound K. The optimum reaction conditions for compound K formation from ginsenoside Rb1 were as follows: reaction time 72-96 h, pH 4.0-4.5, and temperature $45-55^{\circ}C$. Conclusion: AMMEP can be used to produce the human intestinal bacterial metabolite, compound K, from ginsenoside Rb1 with a high yield and without food safety issues.

Enzymatic Preparation of Maltooctaose-rich Mixture from Starch Using a Debranching Enzyme of Nostoc punctiforme

  • Choi, Ji-Hye;Kim, Myo-Jeong;Kim, Young-Wan;Lee, Hee-Seob;Park, Jong-Tae;Lee, Byong-Hoon;Park, Kwan-Hwa
    • Food Science and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.570-573
    • /
    • 2009
  • The debranching enzyme of Nostoc punctiforme (NPDE) is a novel enzyme that catalyzes the hydrolysis of $\alpha$-1,6-glycosidic linkages in starch, followed by the sequential hydrolysis of $\alpha$-1,4-glycosidic linkages. The debranching activity of NPDE is highly specific for branched chains with a degree of polymerization (DP)>8. Moreover, the rate of hydrolysis of $\alpha$-1,4-linkages by NPDE is greatly enhanced for maltooligosaccharides (MOs) with a DP>8. An analysis of reaction mixtures containing various starches revealed the accumulation of maltooctaose (G8) with glucose and maltose. Based on the novel enzymatic properties of NPDE, an MO mixture containing more than 60% G8 with yield of 18 g G8 for 100 g starch was prepared by the reaction of NPDE with soluble starch, followed by ethanol precipitation and gel permeation chromatography (GPC). The yield of the G8-rich mixture was significantly improved by the addition of isoamylase. In summary, a 4-step process for the production of a G8-rich mixture was developed involving the enzymatic hydrolysis of starch by NPDE.

The Enzymatic Hydrolysis of Cellulose in Supercritical Carbon Dioxide Fluid (초임계 이산화탄소 유체에서 섬유소의 효소 가수분해)

  • Park, Chang-Yeol;Kim, Chul;Ryu, Yeon-Woo
    • KSBB Journal
    • /
    • v.13 no.6
    • /
    • pp.687-692
    • /
    • 1998
  • Experimental studies were carried out on the use of supercritical fluid in enzymatic hydrolysis of cellulose. In order to effectively perform the hydrolysis the enzyme has to maintain stability and activity in the supercritical carbon dioxide solvent. In the experiment it was found that the stability of cellulase was maintained up to 160 atm for 90 min at $50^{\circ}C$. In the enzymatic hydrolysis of cellulose at supercritical conditions using carbon dioxide at 80 atm and $50^{\circ}C$ for 90 min, the results showed that glucose yield was 100%, which was 1.5 times as compared to that in atmospheric condition when the substrate (Avicel) concentration was 20 g/L. For the substrate concentration of 60 g/L, the glucose yield was increased by 1.2 times as compared to that in atmospheric condition.

  • PDF

Optimization of Enzymatic Hydrolysis for the Production of Antitoxic Bovine Hepatic Extract (항독성 소간추출물의 생산을 위한 효소분해의 최적화)

  • Kim, Hyun-Jung;Kwon, Do-Hyeong;Shon, Dong-Haw
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.2
    • /
    • pp.190-193
    • /
    • 2008
  • Bovine hepatic extract is recognized as possessing detoxifying activity against various liver diseases. In orderto develop a process for its mass production, various enzymatic hydrolysis conditions were tested, and bovine hepatic extracts were prepared. These extracts were then examined for composition, microorganism levels, and vitamin $B_{12}$ content. Among the enzymes tested, papain was selected based on yields for dry residue and amino nitrogen. The other enzymes tested included bromelain, ficin, pancreatin, and protease NP. The optimal hydrolysis conditions were established at 65$^{\circ}C$ for 24 hr, with an addition of 1%(w/w) papain to the beef liver. The prepared spray-dried bovine hepatic extract showed an 11% recovery yield on a raw beef liver basis, with 95% dry residue and 11.8% total nitrogen content. Microorganisms were not detected in the dried extract, and its vitamin $B_{12}$ content was 4.1 ${\mu}$g/g. In summary, the conditions established in this study could be applied for the high yield mass production of bovine hepatic extract.

Process Development for the Recovery of Sialic Acid Fraction by Enzymatic Hydrolysis of Egg Yolk Protein (난황 단백질의 효소 가수분해에 의한 sialic acid의 회수 공정 개발)

  • Kang Byung Chul;Lee Kwang Hyun
    • Journal of Life Science
    • /
    • v.15 no.1 s.68
    • /
    • pp.9-14
    • /
    • 2005
  • Batch enzymatic hydrolysis of egg yolk protein by protease was carried out at laboratory scale coupled to an ultrafiltration module. Effect of ethanol concentrations on the performance of enzymatic hydrolysis was studied to determine the optimum condition of recovery of hydrolysate. The enzymatic hydrolysis was conducted stepwise with following conditions, $50^{\circ}C$, pH 10.0 and pH 6.5. Ethanol concentration was changed from 10 to $40\%$ (w/w). As ethanol concentration was increased, the recovery yield of total solid and protein in enzymatic hydrolysate was also increased. The content of sialic acid and protein in hydrolysate was independent of ethanol concentration. We also investigated the effect of ethanol concentration on the performance of ultrafiltration. As the concentration of ethanol in yolk protein was increased, the recovery yield of product was increased. Ultra­filtration of egg yolk protein hydrolysate was conducted to increase the content of sialic acid. Four ultrafiltation modules were used in this study, and we evaluated the performance of the UF modules. When Amicon module was used, the recovery percentage of total solid in retentate was $6.0\%$, which is the highest among the modules used. In spite of the difference in the recovery yield of total solid, the purity of sialic acid in retentate was about $2.0\%$, which was 5 times higher than that in feed. It was concluded that the recovery yield and the purity of sialic acid did not correlate with the types of modules and the size of MWCO.

Chemical Characteristics of Solid Residues Produced from Acid Hydrolysis of Hybrid Poplar Wood (은수원사시나무의 무기산 가수분해에 의해 생성된 고형 부산물의 화학 구조)

  • Oh, Shinyoung;Kim, Jae-Young;Hwang, Hyewon;Lee, Oh-Kyu;Choi, Joon Weon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.1
    • /
    • pp.1-11
    • /
    • 2013
  • In this study, we investigated chemical characteristics of solid residues obtained from inorganic acid hydrolysis of hybrid poplar (Populus alba ${\times}$ glandulosa). Different concentration (72, 36, 18%) of sulfuric acid and hydrochloric acid were used for first hydrolysis step and second hydrolysis step were carried out after equally dilution to 4%. Solid residues after consecutive two step hydrolysis were named to RS72 (Residue from Sulfuric acid 72%), RS36, RS18, as well as RC36 (Residue from hydroChloric acid 36%) and RC18, respectively. The yield of RS decreased from 71.2% to 21.4% with increasing sulfuric acid concentration in the first hydrolysis step, whereas that of RC showed little difference (67.0% to 65.0%), irrespective of hydrochloric acid concentration. The lignin content in solid residue was 23.6% for both of RS36 and RS18, 25.6% for RC36 and 27.3% for RC18, respectively. The results of pyrolyzer-GC/MS showed that 24 cellulose derivatives (Levoglucosan, Furfural) and 21 lignin derivatives (Guaiacol, Syringol) were detected. Thermogravimetric analysis indicated that the yield of char increased and maximum wieght loss rate decreased with increasing lignin portion of solid residue. Therefore, structure of lignin was condensed effectively by sulfuric acid and by high concentration of acid.

Biocatalytic Preparation of Chiral Epichlorohydrins Using Recombinant Pichia pastoris Expressing Epoxide Hydrolase of Rhodotorula glutinis

  • Kim, Hee-Sook;Lee, Jae-Hwa;Park, Sunghoon;Lee, Eun-Yeol
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.1
    • /
    • pp.62-64
    • /
    • 2004
  • The use of enantioselective hydrolysis for preparing chiral epichlorohydrins was investigated using recombinant Pichia pastoris with the enantioselective epoxide hydrolase of Rhodotorula glutinis. The rate of the recombinant epoxide hydrolase-catalyzed enantioselective hydrolysis of racemic epichlorohydrins was enhanced by the addition of 5%(v/v) Tween 20. Enantiopure (R)-epichlorohydrins with an enantiopurity of 100% ee and a yield of 26% were obtained within 5min from 50mM racemates.