DOI QR코드

DOI QR Code

Process Development for the Recovery of Sialic Acid Fraction by Enzymatic Hydrolysis of Egg Yolk Protein

난황 단백질의 효소 가수분해에 의한 sialic acid의 회수 공정 개발

  • Kang Byung Chul (Department of Chemical Engineering, Dong-Eui University) ;
  • Lee Kwang Hyun (Department of Chemical Engineering, Dong-Eui University)
  • Published : 2005.02.01

Abstract

Batch enzymatic hydrolysis of egg yolk protein by protease was carried out at laboratory scale coupled to an ultrafiltration module. Effect of ethanol concentrations on the performance of enzymatic hydrolysis was studied to determine the optimum condition of recovery of hydrolysate. The enzymatic hydrolysis was conducted stepwise with following conditions, $50^{\circ}C$, pH 10.0 and pH 6.5. Ethanol concentration was changed from 10 to $40\%$ (w/w). As ethanol concentration was increased, the recovery yield of total solid and protein in enzymatic hydrolysate was also increased. The content of sialic acid and protein in hydrolysate was independent of ethanol concentration. We also investigated the effect of ethanol concentration on the performance of ultrafiltration. As the concentration of ethanol in yolk protein was increased, the recovery yield of product was increased. Ultra­filtration of egg yolk protein hydrolysate was conducted to increase the content of sialic acid. Four ultrafiltation modules were used in this study, and we evaluated the performance of the UF modules. When Amicon module was used, the recovery percentage of total solid in retentate was $6.0\%$, which is the highest among the modules used. In spite of the difference in the recovery yield of total solid, the purity of sialic acid in retentate was about $2.0\%$, which was 5 times higher than that in feed. It was concluded that the recovery yield and the purity of sialic acid did not correlate with the types of modules and the size of MWCO.

난황 단백질의 효소에 의한 가수분해에서 에탄올의 농도가 증가할수록 고형물과 단백질의 회수가 증가함을 알 수 있었다. 이것은 유화층을 에탄올의 증가가 감소시켰기 때문이다. 그러나 가수분해물에서 단백질 함량이나 sialic acid의 함량은 에탄을 농도와는 관계없이 일정하였다. 한외여과 후에 retentate에 대한 에탄올의 영향을 조사하였다. 마찬가지로 고형물의 회수는 에탄을 농도의 증가와 함께 증가하였다. 그리고 retentate에서 sialic acid의 함량은 대략 $2.5\%$정도로 일정하고 에탄올의 농도에 영향을 받지 않았다 이상의 결과로부터 난황 단백질의 효소 가수분해를 통해 sialic acid가 함유된 제품을 얻고자 할 때는 원료 난황단백질에 포함된 에탄올의 함량을 증가시킬수록 높은 수율의 제품을 얻을 수 있다. 본 실험에서는 원료 난황 단백질 중에서 $40\%$의 에탄을 함량까지는 제품 수율이 계속 증가하는 경향을 보였다. 난황 단백질 가수분해물의 한외여과에서 농축단계에서는 막 모듈의 MWCO의 차이에도 불구하고 retentate에서 총 고형물의 회수율은 비슷함을 나타내었으며, 투석에서 회수율은 MWCO가 작을수록 높아지지는 않았다. 제품에서의 sialic acid의 함량은 사용한 모듈에서 약 $2.0\%$를 나타내었다. 이것은 단백질 가수분해물에 비해 5배정도 상승한 결과이다. 본 연구에서 사용된 막 모듈 가운데서 Amicon 모듈이 제품의 회수율과 함량면에서 가장 우수한 특성을 보였다. 결론적으로 난황 단백질의 protease에 의한 가수분해에서 한외여과에 의해 순도를 높일 때 MWCO, 막 모듈의 type 그리고 운전조건 등을 잘 고려해 줄 때 최적의 조업조건을 얻을 수 있었다.

Keywords

References

  1. A.O.A.C. 1975. Official methods of analysis. Association of Official Analytical Chemists, Washington, D.C
  2. Adler-Nissen, J. 1977. Enzymatic hydrolysis of food proteins. Process Biochem. 1, 18-23
  3. D'Alvise, N., C. Lesueur-Lambert, B. Fertin, P. Dhulster and D. Guillochon. 2000. Removal of polyphenols and recovery of protein from alfalfa protein concentrate by ultrafiltration and adsorbent resin separations. Separation Sci. Technol. 15, 2453-2472
  4. Deeslie, W. D. and M. Cheryan. 1981. Continuous enzymatic modification of proteins in an ultrafiltration reactor. J. Food Sci. 46, 1035-1042 https://doi.org/10.1111/j.1365-2621.1981.tb02987.x
  5. Holmgren, J., L. Svennerholm, H. Elwing, P. Fredman and O. Strannegard. 1980. Sendai virus receptor: propoesed recognition structure based on binding to pia tic-adsorbed gangliosides. Proc. Natl. Acad. Sci. 77, 1947-1949 https://doi.org/10.1073/pnas.77.4.1947
  6. Hyun, C. K. and H. K. Shin. 2000. Utilization of bovine blood plasma proteins for the production of angiotensin I converting enzyme inhibitory peptides. Process Biochem. 36, 65-71 https://doi.org/10.1016/S0032-9592(00)00176-X
  7. Juneja, L. K, M. Koketsu, K. Nishimoto, M. Kim, T. Yamamoto and T. Itoh. 1991. Large-scale preparation of sialic acid from chalaza and egg-yolk membrane. Carbohydr. Res. 214, 179-183 https://doi.org/10.1016/S0008-6215(00)90540-8
  8. Kinsella, J. E. 1976. Functional properties of proteins in foods: a survey. Crit. Rev. Food Sci. Nutr. 7, 219-280 https://doi.org/10.1080/10408397609527208
  9. Kinsella, J. E. 1979. Functional properties of soy proteins. J. Amer. Oil Chem. Soc. 56, 242-258 https://doi.org/10.1007/BF02671468
  10. Koketsu, M., K. Nakata, L. R Juneja, M. Kim and T. Yamamoto. 1995. Learning performance of egg yolk sialyloligosaccharides. Oyotoshitsu Kagaku 9, 15-18
  11. Koketsu, M., T. Nitoda, L. R Juneja, M. Kim, N. Kashimura and T. Yamamoto. 1995. Sialylglycopeptides from egg yolk as an inhibitor of rota viral infection. J. Agric. Food. Chem. 43, 858-860 https://doi.org/10.1021/jf00052a002
  12. Li, S. C., J. L. Chien, C. C. Wan,C. C. and Y. T. Li. 1978. Occurence of glycosphingolipids in chicken egg yolk. Biochem. J. 173, 697-701
  13. Mannheim, A. and M. Cheryan. 1981. Continous hydrolysis of milk protein in a membrane reactor. J. Food Sci. 55, 381-385 https://doi.org/10.1111/j.1365-2621.1990.tb06769.x
  14. Parkinson, T. L. 1966. The chemical composition of eggs. J. Sci. Food Agri. 17, 101-106 https://doi.org/10.1002/jsfa.2740170301
  15. Sakanaka, S., Y. Tachibana, N. Ishihara and L. R. Juneja. 2004. Antioxidant activity of egg-yolk protein hydrolysates in a linoleic acid oxidation system. Food Chem. 86, 99-103 https://doi.org/10.1016/j.foodchem.2003.08.014
  16. Seko, A., M. Koketsu, M. Nishizono, Y. Enoki, H. K Ibrahim, L. R. Juneja, M. Kim and T. Yamamoto. 1997. Occurrence of a sialylglycopeptide and free sialylglycans in hen's egg yolk. Biochimica et Biophysica Acta 1335, 23-32 https://doi.org/10.1016/S0304-4165(96)00118-3
  17. Warren, L. 1959. The thiobarbituric acid assay of sialic acids. J. Biol. Chem. 234, 1971-1975