DOI QR코드

DOI QR Code

Chemical Characteristics of Solid Residues Produced from Acid Hydrolysis of Hybrid Poplar Wood

은수원사시나무의 무기산 가수분해에 의해 생성된 고형 부산물의 화학 구조

  • Oh, Shinyoung (Dept. Forest Sciences, CALS, Seoul National University) ;
  • Kim, Jae-Young (Dept. Forest Sciences, CALS, Seoul National University) ;
  • Hwang, Hyewon (Dept. Forest Sciences, CALS, Seoul National University) ;
  • Lee, Oh-Kyu (Devision of Bioenergy, Korea Forest Research Institute) ;
  • Choi, Joon Weon (Dept. Forest Sciences, CALS, Seoul National University)
  • 오신영 (서울대학교 농업생명과학대학 산림과학부) ;
  • 김재영 (서울대학교 농업생명과학대학 산림과학부) ;
  • 황혜원 (서울대학교 농업생명과학대학 산림과학부) ;
  • 이오규 (국립산림과학원 바이오에너지과) ;
  • 최준원 (서울대학교 농업생명과학대학 산림과학부)
  • Received : 2012.10.04
  • Accepted : 2013.01.05
  • Published : 2013.01.25

Abstract

In this study, we investigated chemical characteristics of solid residues obtained from inorganic acid hydrolysis of hybrid poplar (Populus alba ${\times}$ glandulosa). Different concentration (72, 36, 18%) of sulfuric acid and hydrochloric acid were used for first hydrolysis step and second hydrolysis step were carried out after equally dilution to 4%. Solid residues after consecutive two step hydrolysis were named to RS72 (Residue from Sulfuric acid 72%), RS36, RS18, as well as RC36 (Residue from hydroChloric acid 36%) and RC18, respectively. The yield of RS decreased from 71.2% to 21.4% with increasing sulfuric acid concentration in the first hydrolysis step, whereas that of RC showed little difference (67.0% to 65.0%), irrespective of hydrochloric acid concentration. The lignin content in solid residue was 23.6% for both of RS36 and RS18, 25.6% for RC36 and 27.3% for RC18, respectively. The results of pyrolyzer-GC/MS showed that 24 cellulose derivatives (Levoglucosan, Furfural) and 21 lignin derivatives (Guaiacol, Syringol) were detected. Thermogravimetric analysis indicated that the yield of char increased and maximum wieght loss rate decreased with increasing lignin portion of solid residue. Therefore, structure of lignin was condensed effectively by sulfuric acid and by high concentration of acid.

본 연구에서는 은수원사시나무의 산 당화공정에서 생성되는 고형 부산물의 화학적, 구조적 특성을 관찰하였다. 산 가수분해는 황산과 염산을 사용하였고, 1차 가수분해농도를 72%, 36%, 18%로 변화를 주었고, 2차 가수분해에서 4%로 동일하게 희석하였다. 가수분해 후 액상 가수분해액과 고형 부산물을 각각 분리하였고 고형 부산물을 각각 RS72, RS36, RS18, RC36, RC18이라고 하였다. 황산의 농도가 높아짐에 따라 생성된 고형부산물은 감소(71.2~21.4%)하였지만, 염산의 농도는 고형 부산물의 생성량(65.0~67.0%)에 큰 영향을 주지 않았다. 또한 RS36과 RS18은 고형 부산물 질량 대비 23.6%, RC36과 RC18은 각각 25.6%, 27.3%가 리그닌으로 이루어져 있었다. 고형 부산물의 열분해산물 분석 결과 Levoglucosan, Furfural 등 탄수화물 유래 물질과 리그닌 유래 물질인 Guaiacol, Syringol 등이 검출되었지만 RS72에서는 리그닌 유래 물질만이 검출되었다. 또한 열중량분석결과 고형 부산물 내 리그닌 함량이 높아질수록 다량의 탄이 생성되고 최대 중량 감소율이 감소하여 염산에 비해 황산이, 또한 산의 농도가 높을수록 화학적으로 축합된 구조를 형성하는 것을 확인하였다.

Keywords

References

  1. Adler, E. 1977. Lignin chemistry-past, present, and the future, Wood Science Technology, 11: 169-218. https://doi.org/10.1007/BF00365615
  2. Baker, S. 1996. Rapid methoxyl analysis of lignins using gas chromatography. Holzforschung, 50(6): 573-574.
  3. Bjorkman, A. 1956. Studies on finely divided wood. Part 1. Extraction of lignin with neutral solvents, Svensk papperstidning, 59(13): 477-485.
  4. Camacho, F., P. Gonzalez-Tello, E. Jurado, and A. Robles. 1996. Microcrystalline-cellulose hydrolysis with concentrated sulphuric acid. Journal of Chemical Technology and Biotechnology, 67(4): 350-356.
  5. Carrasco, J., M. C. Saiz, A. Navarro, P. Soriano, F. Saez, and J. Martinez. 1994. Effects of dilute acid and steam explosion pretreatments on the cellulose structure and kinetics of cellulosic fraction hydrolysis by dilute acids in lignocellulosic materials. Applied biochemistry and biotechnology, 45(1): 23-34.
  6. Dizhbite, T., G. Zakis, A. Kizima, E. Lazareva, G. Rossinskaya, V. Jurkjane, G. Telysheva, and U. Viesturs. 1999. Lignin- a useful bioresource for the production of sorption-active materials, Bioresource Technology, 67(3): 221-228.
  7. Gang, H., J. A. Heitmann, and O. J. Rojas. 2008. Feed stock pretreatment atrategies for producind ethanol from wood, bark, and forest residues, BioResources, 3(1): 270-294.
  8. Hoover, R. 2007. Acid-treated strarches, Food reviews international, 16(3): 369-392.
  9. Kalda, J. F., S. Kubo, R. A. Venditti, R. D. Gilbert, A. L. Compere, and W. Griffith. 2002. Lignin-based carbon fibers for composite fiber applications, Carbon, 40(15): 2913-2920.
  10. Kazen, R. and D. F. Othmer. 1942. Wood hydrolysis a continuous process, Industrial and engineering chemistry, 34(3): 314-321.
  11. Kleinert, M. and T. Barth. 2008. Phenols from lignin, Chemical Engineering & Technology, 31(5): 736-745.
  12. Lu, X., K. Yamauchi, N. Phaiboonsilpa, and S. Saka. 2009. Two-step hydrolysis of Japanese beech as treated by semi-flow hot-compressed water, Journal Wood Science, 55(5): 367-375. https://doi.org/10.1007/s10086-009-1040-6
  13. Mansson, P. 1983. Quantitative determination of phenolic and total hydroxyl groups in lignins. Holzforschung, 37(3): 143-146.
  14. Matsushita, Y. and S. Yasuda. 2003. Reactivity of a condensed-type lignin model compound in the Mannich reaction and preparation of cationic surfactant from sulfuric acid lignin, Journal of wood science, 49(2): 166-171. https://doi.org/10.1007/s100860300026
  15. Pew, J. C. 1957. Properties of powdered wood and isolation of lignin by cellulytic enzymes, Tappi 40: 553.
  16. Raveendran, K., A. Ganesh, and K. C. Khilar. 1996. Pyrolysis characteristics of biomass and biomass components, Fuel, 75(8): 987-998.
  17. Carrott, P. and M. Ribeiro Carrott. 2007. Ligninfrom natural adsorbent to activates carbon: A Review, Bioresources Technology, 98(12): 2301-2312. https://doi.org/10.1016/j.biortech.2006.08.008
  18. Sluiter, A., R. Ruiz, C. Scarlata, and J. Sluiter. 2005. Templeton, D., Determination of extractives in biomass. Laboratory Analytical Procedure (LAP).
  19. Sluiter, A., B. Hames, R. Ruiz, C. Scarlata, and J. Sluiter. 2008. Templeton, D., Determination of ash in biomass. National Renewable Energy Laboratory.
  20. Wise, L. E., M. Murphy, and A. d'Addieco. 1946. Chlorite holocellulose, its fractionnation and bearing on summative wood analysis and on studies on the hemicelluloses. Paper Trade Journal, 122(2): 35.
  21. 고재흥. 2011. 목질계 바이오매스 에너지. NICE. 29(3): 351-354.
  22. 신수정, 박종문, 조대행, 김용환, 조남석. 2009. 백합나무를 이용한 고농도 단당류 생산을 위한 산 가수분해 특성 연구. 목재공학, 37(6): 578-584.
  23. 신수정. 2011. $^{1}H$-NMR 에 의한 Xylan의 황산가수분해 과정에서 나타나는 반응 동력학 연구. 펄프․종이기술, 43(3): 52-58.