• Title/Summary/Keyword: hydrological features

Search Result 39, Processing Time 0.03 seconds

Land Surface Soil Moisture Effect on DInSAR

  • Lee C.W.;Kim S.W.;Won J.S.
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.174-177
    • /
    • 2004
  • Differential interferometric phases from JERS-1 L­band data sets show spatial variation of path-length ranging from a few mm to several cm. The variation may be caused by changes in soil moisture contents, i.e. variation of penetration depth and the swelling of soils. Although the amount of total effect caused by soil moisture is not measurable, it is clear that the soil moisture according to precipitation is another factor to be considered in DInSAR analysis. We also discuss DInSAR characteristics in a rice paddy according to irrigation conditions, and discrimination of hydrological features such as stream channels and watershed boundaries by applying DInSAR technique.

  • PDF

Conceptual eco-hydrological model reflecting the interaction of climate-soil-vegetation-groundwater table in humid regions (습윤 지역의 기후-토양-식생-지하수위 상호작용을 반영한 개념적인 생태 수문 모형)

  • Choi, Jeonghyeon;Kim, Sangdan
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.9
    • /
    • pp.681-692
    • /
    • 2021
  • Vegetation processes have a significant impact on rainfall runoff processes through evapotranspiration control, but are rarely considered in the conceptual lumped hydrological model. This study evaluated the model performance of the Hapcheon Dam watershed by integrating the ecological module expressing the leaf area index data sensed remotely from the satellite into the hydrological partition module. The proposed eco-hydrological model has three main features to better represent the eco-hydrological process in humid regions. 1) The growth rate of vegetation is constrained by water shortage stress in the watershed. 2) The maximum growth of vegetation is limited by the energy of the watershed climate. 3) The interaction of vegetation and aquifers is reflected. The proposed model simultaneously simulates hydrologic components and vegetation dynamics of watershed scale. The following findings were found from the validation results using the model parameters estimated by the SCEM algorithm. 1) Estimating the parameters of the eco-hydrological model using the leaf area index and streamflow data can predict the streamflow with similar accuracy and robustness to the hydrological model without the ecological module. 2) Using the remotely sensed leaf area index without filtering as input data is not helpful in estimating streamflow. 3) The integrated eco-hydrological model can provide an excellent estimate of the seasonal variability of the leaf area index.

Estimation of Water Balance based on Satelite Date in the Korean Peninsula

  • Shin, Sha-Chul;Sawamoto masaki, Sawamoto-Masaki
    • Korean Journal of Hydrosciences
    • /
    • v.8
    • /
    • pp.97-110
    • /
    • 1997
  • Quantifying water balance components is crucial to understanding the basic hydrology and hydrochemistry. An importance of water balace studies has been emphasized from the need to grasp the actual condition of water resources and environmental changes including climatic changes. This paper proposes a method for evaluating water balance components based on the vegetation monitor using remote sensing data. Here, the evapotranspiration model adopts a direct method by using NDVI(Normalized Difference Vegetation Index) calculated from NOAA/AVHRR data and a detailed descriptionof water balance by using the evapotranspiration over the Korean Peninsula. In the study, areal distribution data sets of water balance components are produced using NDVI and a simplified water balance model. This method enables one to discuss the hydrological problems for North Korea where insufficient meteorological and hydrological data exist. The results obtained indicate the specific regional features on water inventory and fluctuation in water balance.

  • PDF

Landslide Stability Analysis and Prediction Modeling with Landslide Occurrences on KOMPSAT EOC Imagery

  • Chi, Kwang-Hoon;Lee, Ki-Won;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.1
    • /
    • pp.1-12
    • /
    • 2002
  • Landslide prediction modeling has been regarded as one of the important environmental applications in GIS. While, landslide stability in a certain area as collateral process for prediction modeling can be characterized by DEM-based hydrological features such as flow-direction, flow-accumulation, flow-length, wetness index, and so forth. In this study, Slope-Area plot methodology followed by stability index mapping with these hydrological variables is firstly performed for stability analysis with actual landslide occurrences at Boeun area, Korea, and then Landslide prediction modeling based on likelihood ratio model for landslide potential mapping is carried out; in addition, KOMPSAT EOC imagery is used to detect the locations and scalped scale of Landslide occurrences. These two tasks are independently processed for preparation of unbiased criteria, and then results of those are qualitatively compared. As results of this case study, land stability analysis based on DEM-based hydrological variables directly reflects terrain characteristics; however, the results in the form of land stability map by landslide prediction model are not fully matched with those of hydrologic landslide analysis due to the heuristic scheme based on location of existed landslide occurrences within prediction approach, especially zones of not-investigated occurrences. Therefore, it is expected that the resets on the space-robustness of landslide prediction models in conjunction with DEM-based landslide stability analysis can be effectively utilized to search out unrevealed or hidden landslide occurrences.

Seasonal Characteristics of Pore Development and Hydraulic Properties of Surface Soil in Two Forested Watershed (두 산림유역의 표층 토양의 공극 발달과 수리학적 성질의 계절적 특성)

  • Joo, Sung-Hyo;Gwak, Yong-Seok;Kim, Su-Jin;Kim, Joon;Kim, Sang-Hyun
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.4
    • /
    • pp.151-161
    • /
    • 2009
  • Configuration of soil hydraulic property is an essential component to understand the hydrological processes at the hillslope scale. In this study, we investigated temporal variations in pore development and soil hydraulic properties during the period from March to October in 2008. Characteristics for macropore flow and hydraulic conductivity were measured at two hillslopes: one is the hillslope located at the Buprunsa in Sulmachun watershed, and the other is the hillslope located in Gwangneung Research Forest. Vertical fluxes through macropore were measured using a tension infiltrometer at the depth of surface. The saturated hydraulic conductivities in March, June, July and September were relatively high compared to those in May and October. Temporal variations in several soil hydraulic features could be explained by the differences in vegetation activity and soil moisture content determined by antecedent precipitation. Particularly, the features of macropores had a substantial impact on hydraulic conductivity in the forest hillslope. The temporal nonuniformity of the soil hydraulic properties observed in this study manifests the dynamic features of hydrological processes in the hillslope scale and the experimental results will be useful to understand the internal hydrological processes in the mountainous hillslope.

Review of Features and Applications of Watershed-scale Modeling, and Improvement Strategies of it in South-Korea (유역 모델 특성 및 국내 적용 현황과 발전 방향에 대한 검토)

  • Park, Youn Shik;Ryu, Jichul;Kim, Jonggun;Kum, Donghyuk;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.6
    • /
    • pp.592-610
    • /
    • 2020
  • In South Korea, the concept of water environment was expanded to include aquatic ecosystems with the Integrated Water Management implementation. Watershed-scale modeling is typically performed for hydrologic component analysis, however, there is a need to expand to include ecosystem variability such that the modeling corresponds to the social and political issues around the water environment. For this to be viable, the modeling must account for several distinct features in South Korean watersheds. The modeling must provide reasonable estimations for peak flow rate and apply to paddy areas as they represent 11% of land use area and greatly influence groundwater levels during irrigation. These facts indicate that the modeling time intervals should be sub-daily and the hydrologic model must have sufficient power to process surface flow, subsurface flow, and baseflow. Thus, the features required for watershed-scale modeling are suggested in this study by way of review of frequently used hydrologic models including: Agricultural Policy/Environmental eXtender(APEX), Catchment hydrologic cycle analysis tool(CAT), Hydrological Simulation Program-FORTRAN(HSPF), Spatio-Temporal River-basin Ecohydrology Analysis Model(STREAM), and Soil and Water Assessment Tool(SWAT).

A Study on the Morphological Characteristics of the River Mouth in the East Coast and Analysis of It's Causes (동해안 하구 형태의 특성과 그 요인 분석에 관한 연구)

  • 이원환;송재우
    • Water for future
    • /
    • v.8 no.2
    • /
    • pp.65-74
    • /
    • 1975
  • The east coast seems to have remarkably different features from the west and south coast in the geographical, geomorphological, and oceanographical senses. In this paper the auther wishes to introduce some results of investigation morphological characteristics of the river mouth in the east coast an of analysis of it's causes. There are various closing form in river mouth by many causes, but the east coast hs the same closing form(the ratio of closing; roughly 0.18), as well known, by the sand spit, and has not hydrological but littoral drift background. The river of the east coast is proved mature age from hypsometric analysis. The wave and longshore current must be principal factor to be considered, in the analysis of the closing phenomenon owing to littoral drift. The research of the blown sand is considered valuable for the next study of this subject.

  • PDF

Engineering Problems in Rock Discontinuity (암반 불연속면의 공학적 문제-(General Report))

  • 신희순
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.10a
    • /
    • pp.161-184
    • /
    • 2001
  • Rock masses usually contain such features as bedding planes, faults, fissures, fractures, joints and other mechanical defects which, although formed from a wide range of geological processes, posses the common characteristics of low shear strength, negligible tensile strength and high fluid conductivity compared with the surrounding rock material. In the engineering context here, the discontinuities can be the single most important factor governing the deformability, strength and permeability of the rock mass. Moreover, a particularly large and persistent discontinuity could critically affect the stability of any surface or underground excavation. For these reasons, it is necessary to develop a thorough understanding of the geometrical, mechanical and hydrological properties of discontinuities and the way in which these will affect rock mechanics and hence rock engineering.

  • PDF

Numerical Model study of Surface Temperature and Hydrological Budget Change for the Last Glacial Maximum (마지막 최대 빙하기의 온도 및 물수지 변화 수치모델연구)

  • Kim, Seong-Joong;Lee, Bang-Yong;Yoon, Ho-Il
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.2
    • /
    • pp.135-145
    • /
    • 2006
  • The surface temperature and hydrological budget for the last glacial maximum (LGM) is simulatedwith an atmospheric general circulation model of NCAR CCM3 at spectral truncation of T170, corespondingto a grid cel size of roughly 75 km. LGM simulations were forced with the reconstructed CLIMAP sea surface temperatures, sea ice distribution, ice sheet topography, reduced CO2, and orbital parameters.oC in winter, 5.6oC in sumer,and 6oC annual-mean. The decrease of surface temperature leads to a weakening of the hydrologicalcycle. Global-mean precipitation decreases by about 14% in winter, 17% in summer, and 13% annually.However, some regions such as the U.S., southern Europe, northern and eastern Africa, and the SouthAmerica appear to be weter in the LGM winter and Canada and the Midle East are weter in sumer. model captures detailed climate features over land.

  • PDF

A Modified Digital Elevation Modeling for Stormwater Management Planning in Segmentalized Micro-catchment Areas

  • Lee, Eun-seok
    • Journal of People, Plants, and Environment
    • /
    • v.24 no.1
    • /
    • pp.39-51
    • /
    • 2021
  • Background and objective: Urban topology can be characterized as impervious, which changes the hydrologic features of an area, increasing surface water flow during local heavy rain events. The pluvial flooding is also influenced by the vertical structures of the urban area. This study suggested a modified digital elevation model (DEM) to identify changes in urban hydrological conditions and segmentalized urban micro catchment areas using a geographical information system (GIS). Methods: This study suggests using a modified DEM creation process based on Rolling Ball Method concepts along with a GIS program. This method proposes adding realized urban vertical data to normal DEM data and simulating hydrological analyses based on RBM concepts. The most important aspect is the combination of the DEM with polygon data, which includes urban vertical data in three datasets: the contour polyline, the locations of buildings and roads, and the elevation point data from the DEM. DEM without vertical data (DCA) were compared with the DEM including vertical data (VCA) to analyze catchment areas in Shin-wol district, Seoul, Korea. Results: The DCA had 136 catchments, and the area of each catchment ranged from 3,406 m2 to 423,449 m2. The VCA had 2,963 catchments, with the area of each ranging from 50 m2 to 16,209 m2. The most important finding is that in the overlapped VCA; the boundary of areas directly affected by flooding and the direction of surface water flow could be identified. Flooding data from September 21, 2010 and July 27, 2011 in the Shin-wol district were applied as ground reference data. The finding is that in the overlapped VCA; the boundary of areas directly affected by flooding and the direction of surface water flow could be identified. Conclusion: The analysis of the area vulnerable to surface water flooding (SWF) was more accurately determined using the VCA than using the DCA.