• Title/Summary/Keyword: hydrogenated

Search Result 438, Processing Time 0.026 seconds

Kinetics and Statistics of Structural Changes in Polyacrylonitrile (폴리아크릴로니트릴의 構造變化에 있어서의 動力學的 및 統計學的 硏究)

  • Noh, Ick-Sam
    • Journal of the Korean Chemical Society
    • /
    • v.10 no.1
    • /
    • pp.25-31
    • /
    • 1966
  • It is well known that the coloration and structural changes in thermal treatment of polyacrylonitrile are due to the formation of partly hydrogenated naphthylidine-type ring involving the pendant nitrile groups. Any quantitative study of the reaction, in the sense of kinetics and/or statistics, however, has never been reported. This paper presents that, at first, the disappearance of the nitrile groups follows the first order kinetics, which indicates clearly that nitrile groups do not disappear by a long chain reaction-the kinetic chain length is very short. This observation rules out the long intramolecular and intermolecular propagation chain through which most of the nitrile groups disappear. From the evidence that a similar reaction occurs in propylene carbonate solutions without gel formation, one may conclude that the coloration and structural changes are not necessarily intermolecular reaction. Secondly, a finite amount of nitrile groups remains unreacted at the extrem of reaction-not contributed to the formation of naphthylidine-type ring. The concentration of this unreacted nitrile groups is 19∼22% which is good agreement with the statistically calculated value of 19.2%.

  • PDF

The Fabrication and Electrical Characteristics of Pentacene TFT using Polyimide and Polyacryl as a Gate Dielectric Layer (Polymide와 Polyacryl을 게이트 절연층으로 이용한 pentacene TFT의 제작과 전기적 특성에 관한 연구)

  • Kim, Yun-Myoung;Kim, Ok-Byoung;Kim, Young-Kwan;Kim, Jung-Soo
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.4
    • /
    • pp.161-168
    • /
    • 2001
  • Organic thin film transitors(TFTs) are of interest for use in broad area electronic applications. For example, in active matrix liquid crystal displays(AMLCDs), organic TFTs would allow the use of inexpensive, light-weight, flexible, and mechanically rugged plastic substrates as an alternative to the glass substrates needed for commonly used hydrogenated amorphous silicon(a-Si:H). Recently pentacene TFTs with carrier field effect, mobility as large as 2 $cm^2V^{-1}s^{-1}$ have been reported for TFTs fabricated on silicon substrates, and it is higher than that of a-Si:H. But these TFTs are fabricated on silicon wafer and $SiO_2$ was used as a gate insulator. $SiO_2$ deposition process requires a high insulator which is polyimide and photo acryl. We investigated trasfer and output characteristics of the thin film transistors having active layer of pentacene. We calculated field effect mobility and on/off ratio from transfer characteristics of pentacene thin film transistor, and measured IR absorption spectrum of polymide used as the gate dielectric layer. It was found that using the photo acryl as a gate insulator, threshold voltage decreased from -12.5 V to -7 V, field effect mobility increased from 0.012 $cm^2V^{-1}s^{-1}$ to 0.039 $cm^2V^{-1}s^{-1}$ , and on/off current ratio increased from $10^5\;to\;10^6$. It seems that TFTs using photo acryl gate insulator is apt to form channel than TFTs using polyimide gate insulator.

  • PDF

Nano Capsulization of Ceramide and the Efficacy of Atopy Skin

  • Zhoh, Choon-Koo;Han, Chang-Giu;Hong, Se-Heum;Kim, In-Young;Lee, Hee-Seob
    • Proceedings of the SCSK Conference
    • /
    • 2003.09b
    • /
    • pp.268-279
    • /
    • 2003
  • The nano capsulation of the ceramide was a technique that capsulated ceramide III and tocopheryl linoleate at the mono-vesicle, so as to act the horny layer in skin. It was used 0.5-5.0 wt% of hydrogenated lecithin and 0.01~2.00 wt% of lysolecithin as the membrane-strengthen agents of the mono-vesicle, 5.0~10 wt% of propylene glycol and 5.0~10.0 wt% of ethyl alcohol made by high-pressure Microfluidizer. To enhance the moisturizing efficacy and treat an atopy skin, used ceramide III and tocopheryl linoleate as the active ingredients, and it was made the nano-capsule that synthetic emulsifiers were free. The optimal condition of capsulation of nano ceramide was as follows. The conditions were 3 times at 1,000bar and 60-7$0^{\circ}C$. The particle size showed 63.1$\pm$7.34 nm such as the transparence water as the results for measuring by the laser light scattering. A zeta potential value was -55.1$\pm$0.84 ㎷. The result of the clinical test, the moisturizing effect (in-vivo, n=8, p-value<0.05) was improved 21.15% compared to control, as well as it was improved 36.31 % before the treatment. Moreover, the effectiveness of atopy skin indicated positive reaction that patients were 10 volunteers.

  • PDF

Temperature Dependence of the Electrical Activation Energy and Defect Density in Undoped Amorphous Germanium (a-Ge : H) (비정질 게르마늄(a-Ge : H)의 전기전도 활성화에너지 및 결함밀도의 온도의존성)

  • Jo, U-Seong;Yu, Jong-Hun
    • Korean Journal of Materials Research
    • /
    • v.5 no.6
    • /
    • pp.639-643
    • /
    • 1995
  • The temperature dependence of the dark conductivity was studied on undoped hydrogenated amorphous germanium (a-Ge : H) over the range from 297 to 423 K. The pre-exponential factor $\sigma$$\_$0/ and activation energy E$\_$C/-E$\_$F/ are determined by an Arrhenius plot. The Arrhenius plot of the electrical conductivity shows a kink around the kink temperature and then is composed of two exponential functions. The obtained statistical shift ${\gamma}$$\_$F/ was about 8.65${\times}$10$\^$-3/eV/K and the pre-exponential factor $\sigma$$\_$0/ was about 2$\Omega$$\^$-1/cm$\^$-1/. A temperature dependent defect density is numerically calculated from the conductivity data. A change of the defect density is observed in the factor of about two in the range of the experimental temperature.

  • PDF

Fabrication and Characteristics of a-Si : H TFT for Image Sensor (영상센서를 위한 비정질 실리콘 박막트랜지스터의 제작 및 특성)

  • Kim, Young-Jin;Park, Wug-Dong;Kim, Ki-Wan;Choi, Kyu-Man
    • Journal of Sensor Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.95-99
    • /
    • 1993
  • a-Si : H TFTs for image sensor have been fabricated and their operational characteristics have been investigated. Hydrogenated amorphous silicon nitride(a-SiN : H) films were used for the gate insulator and $n^{+}$-a-Si : H films were depostied for the source and drain contact. The thicknesses of a-SiN : H and a-Si : H films were $2000{\AA}$, respectively and the thickness of $n^{+}$-a-Si : H film was $500{\AA}$. Also the channel length and channel width of a-Si : H TFTs were $50{\mu}m$ and $1000{\mu}m$, respectively. The ON/OFF current ratio, threshold voltage, and field effect mobility of fabricated a-Si : H TFTs were $10^{5}$, 6.3 V, and $0.15cm^{2}/V{\cdot}s$, respectively.

  • PDF

Distribution of Ions and Molecules Density in N2/NH3/SiH4 Inductively Coupled Plasma with Pressure and Gas Mixture Ratio) (N2/NH3/SiH4 유도 결합형 플라즈마의 압력과 혼합가스 비율에 따른 이온 및 중성기체 밀도 분포)

  • Seo, Kwon-Sang;Kim, Dong-Hyun;Lee, Ho-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.370-378
    • /
    • 2017
  • A fluid model of 2D axis-symmetry based on inductively coupled plasma (ICP) reactor using $N_2/NH_3/SiH_4$ gas mixture has been developed for hydrogenated silicon nitride ($SiN_x:H$) deposition. The model was comprised of 62 species (electron, neutral, ions, and excitation species), 218 chemical reactions, and 45 surface reactions. The pressure (10~40 mTorr) and gas mixture ratio ($N_2$ 80~96 %, $NH_3$ 2~10 %, $SiH_4$ 2~10 %) were considered simulation variables and the input power fixed at 1000 W. Different distributions of electron, ions, and molecules density were observed with pressure. Although ionization rate of $SiH_2{^+}$ is higher than $SiH_3{^+}$ by electron direct reaction with $SiH_4$, the number density of $SiH_3{^+}$ is higher than $SiH_2{^+}$ in over 30 mTorr. Also, number density of $NH^+$ and $NH_4{^+}$ dramatically increased by pressure increase because these species are dominantly generated by gas phase reactions. The change of gas mixture ratio not affected electron density and temperature. With $NH_3$ and $SiH_4$ gases ratio increased, $SiH_x$ and $NH_x$ (except $NH^+$ and $NH_4{^+}$) ions and molecules are linearly increased. Number density of amino-silane molecules ($SiH_x(NH_2)_y$) were detected higher in conditions of high $SiH_x$ and $NH_x$ molecules density.

Effects of Deposition Parameters on the Bonding Structure and Optical Properties of rf Sputtered a-Si$_{1-x}$C$_{x}$: H films (RF 스퍼터링으로 증착된 a-Si$_{1-x}$C$_{x}$: H 박막의 결합구조와 광학적 성질에 미치는 증착변수의 영향)

  • 한승전;권혁상;이혁모
    • Journal of the Korean institute of surface engineering
    • /
    • v.25 no.5
    • /
    • pp.271-281
    • /
    • 1992
  • Amorphous hydrogenated silicon carbide(a-Si1-xCx : H) films have been prepared by the rf sputtering using a silicon target in a gas mixture of Argon and methane with varying methane gas flow rate(fCH) in the range of 1.5 to 3.5 sccm at constant Argon flow rate of 30sccm and rf power in the range of 3 to 6 W/$\textrm{cm}^2$. The effects of methane flow rate and rf power on the structure and optical properties of a-Si1-xCx : H films have been analysed by measuring both the IR absorption spectrum and the UV transmittance for the films. With increasing the methane flow rate, the optical band gap(Eg) of a-Si1-xCx : H films increases gradually from 1.6eV to the maximum value of 2.42eV at rf power of 4 W/$\textrm{cm}^2$, which is due to an increases in C/Si ratio in the films by an significant increase in the number of C-Hn bonds. As the rf power increases, the number of Si-C and Si-Hn bonds increases rapidly with simultaneous reduction in the number of C-Hn bonds, which is associated with an increase in both degree of methane decomposition and sputtering of silicon. The effects of rf power on the Eg of films are considerably influenced by the methane flow rate. At low methane flow rate, the Eg of films decreased from 2.3eV to 1.8eV with the rf power. On the other hand, at high methane flow rate, that of films increased slowly to 2.4eV.

  • PDF

A Study of Defects in $Poly-Si/SiO_2$ Thin Films Using Electron Paramagnetic Resonance : Defect Density Changes due to Plasma Hydrogenation Treatment (전자상자성공명을 이용한 $Poly-Si/SiO_2$ 박막의 결함연구 : 플라즈마 수소화처리에 따른 결함밀도의 변화)

  • 노승정;장혁규
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.6
    • /
    • pp.346-349
    • /
    • 1998
  • In order to reduce to the defect density in poly-Si/SiO$_2$ thin films, where poly-Si is either undoped or doped by BF$_2$ implantation, the poly-Si/SiO$_2$ samples have been hydrogenated by rf plasmas of low temperature. Before hydrogenation, both $P_b$ centers and E centers were observed in the poly-Si(undoped)/SiO$_2$ and in the poly-Si(doped)/SiO$_2$. After 30 min hydrogenation, the $P_b$ center was reduced by 80 % doped sample and by 76 % in the undoped sample and the E center was not observed. After 90min hydrogenation, however, increases of the $P_b$ centers and regenerations of the E center were observed in the undoped sample as well as in the doped one. Compared with the undoped sample, the increase of $P_b$ center in the doped one was more dominant.

  • PDF

Review of Factors Affecting IASCC Initiation of Stainless Steel in PWRs (원자로 내부구조물 균열개시 민감도에 미치는 영향인자 고찰)

  • Hwang, Seong Sik;Choi, Min Jae;Kim, Sung Woo;Kim, Dong Jin
    • Corrosion Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.210-229
    • /
    • 2021
  • To safely operate domestic nuclear power plants approaching the end of their design life, the material degradation management strategy of the components is important. Among studies conducted to improve the soundness of nuclear reactor components, research methods for understanding the degradation of reactor internals and preparing management strategies were surveyed. Since the IGSCC (Intergranular Stress Corrosion Cracking) initiation and propagation process is associated with metal dissolution at the crack tip, crack initiation sensitivity was decreased in the hydrogenated water with decreased crack sensitivity but occurrence of small surface cracks increased. A stress of 50 to 55% of the yield strength of the irradiated materials was required to cause IASCC (Irradiation Assisted Stress Corrosion Cracking) failure at the end of the reactor operating life. In the threshold-stress analysis, IASCC cracks were not expected to occur until the end of life at a stress of less than 62% of the investigated yield strength, and the IASCC critical dose was determined to be 4 dpa (Displacement Per Atom). The stainless steel surface oxide was composed of an internal Cr-rich spinel oxide and an external Fe and Ni-rich oxide, regardless of the dose and applied strain level.

Effects of an a-C:H Anti-Reflective Coating on the Cell Efficiency of Dye-Sensitized Solar Cells (DSSCs) (수소화된 비정질 탄소 반사방지 코팅층이 염료감응형 태양전지의 효율에 미치는 영향)

  • Song, Jae-Sil;Kim, Nam-Hoon;Park, Yong Seob
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.4
    • /
    • pp.281-286
    • /
    • 2019
  • Raman spectra of a-C:H thin films deposited with an unbalanced magnetron sputtering system showed that the G peak shifted to a higher wavenumber as the target power density increased and $I_D/I_G$ ratio increased from 0.902 to 1.012. Moreover, the transmittance of a-C:H films fabricated at 60 nm tended to decrease with increasing target power density; at 550 nm in the visible light region, the transmittance decreased from 69% to 58%. The rms surface roughness values of the a-C:H thin films decreased with increasing target power density, and varied from 1.11 nm to 0.71 nm. In order to achieve efficient light trapping, the light scattering at the rough interface must be enhanced. Consequently, the surface roughness of the thin film will decrease with the target power density. Further, the refractive index and reflectivity of the a-C:H thin films increased with increasing target power density; however, the Brewster angle decreased with the target power density. Hence, dye-sensitized solar cells using an a-C:H antireflective coating increased the CE, $V_{OC}$, and $J_{SC}$ by approximately 8.6%, 5.5%, and 4.5%, respectively.