• 제목/요약/키워드: hydrogen storage materials

검색결과 260건 처리시간 0.023초

수소 분위기에서 고 에너지 볼 밀링으로 제조한 80Mg+14Ni+6TaF5합금의 수소와의 반응 속도와 수소 저장 용량 (Reaction Rate with Hydrogen and Hydrogen-storage Capacity of an 80Mg+14Ni+6TaF5 Alloy Prepared by High-energy Ball Milling in Hydrogen)

  • 박혜령;송명엽
    • 한국수소및신에너지학회논문집
    • /
    • 제28권2호
    • /
    • pp.137-143
    • /
    • 2017
  • In the present study, Ni and $TaF_5$ were chosen as additives to enhance the hydriding and dehydriding rates of Mg. A sample with a composition of 80 wt% Mg + 14 wt% Ni + 6 wt% $TaF_5$ (named $80Mg+14Ni+6TaF_5$) was prepared by high-energy ball milling in hydrogen. Its hydriding and dehydriding properties were then examined. At the fourth cycle, the activated sample absorbed 3.88 wt% H for 2.5 min, 4.74 wt% H for 5 min, and 5.75 wt% H for 60 min at 593 K under 12 bar $H_2$. $80Mg+14Ni+6TaF_5$ had an effective hydrogen-storage capacity (the quantity of hydrogen absorbed for 60 min) of about 5.8 wt%. The sample desorbed 1.42 wt% H for 5 min, 3.42 wt% H for 15 min, and 5.09 wt% H for 60 min at 593 K under 1.0 bar $H_2$. Line scanning results by EDS for $80Mg+14Ni+6TaF_5$ before and after cycling showed that the peaks of Ta and F appeared at different positions, indicating that the $TaF_5$ in $80Mg+14Ni+6TaF_5$ was decomposed.

TIG 용접된 스테인리스강의 수소영향에 대한 연구 (Study on Hydrogen Effect in TIG Welded Stainless Steel)

  • 이진경;이상필;배동수;이준현
    • 동력기계공학회지
    • /
    • 제20권6호
    • /
    • pp.58-63
    • /
    • 2016
  • A stainless steel has high corrosion resistance because of nickel in material, so it is used as materials for transportation and storage of hydrogen. In this study, TIG(tungsten ingot gas) welding was carried out on the stainless steel using the storage vessel of hydrogen. The microscopic structures at each region of TIG welded material such as HAZ, weld and base metals using optical microscope were observed. And the damage behavior of stainless steel that underwent the hydrogen charging using nondestructive evaluation was also studied. Ultrasonic test, which is the most generalized nondestructive technique, was applied to evaluate the relationship between the ultrasonic wave and mechanical properties at each zone of TIG welded stainless steel. The velocity and attenuation coefficients of ultrasonic wave didn't show a remarkable difference at each region of welded stainless steel. However, the attenuation coefficient was the highest at the weld zone when hydrogen charged stainless steel. In addition, acoustic emission test was also used to study the dynamic behavior of stainless steel experienced both hydrogen charging and weld. Lots of AE event at elastic region of stress-strain curve were occurred both the hydrogen charged specimen and the free specimen.

High Hydrogen Capacity and Reversibility of K-Decorated Silicon Materials

  • Park, Min-Hee;Ryu, Seol;Han, Young-Kyu;Lee, Yoon-Sup
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권5호
    • /
    • pp.1719-1721
    • /
    • 2012
  • We have investigated the $H_2$ adsorption structures and binding energies of the metal (M)-doped (M = Li, Na, K, Mg, and Al) silicon complexes, $M-Si_{19}H_{11}$ and $M-Si_{24}H_{12}$, using density functional calculations. Alkali metals are preferred as doping elements because the Mg-Si and Al-$H_2$ interactions are weak. The maximum numbers of $H_2$ molecules that can be adsorbed are four and five for M=Li and K, respectively. We propose that the K-decorated silicon material might be an effective hydrogen storage material with high hydrogen capacity and high reversibility.

$Zn[BH_4]_2$ 분말의 합성과 열분해 특성 (Synthesis and thermal decomposition of $Zn[BH_4]_2$)

  • 전은;조영환
    • 한국수소및신에너지학회논문집
    • /
    • 제16권3호
    • /
    • pp.262-268
    • /
    • 2005
  • [ $Zn(BH_4)_2$ ](8.4 wt% theoretical hydrogen storage capacity powders have been successfully synthesized by mechanochemical reaction from mixtures of $ZnCl_2$ and $NaBH_4$ powders in a 1:2 molar ratio in different times. $$ZnCl_2+2NaBH_4{\rightarrow}Zn(BH_4)_2+2NaCl$$ (1) $Zn(BH_4)_2$ powders were characterized by X-ray diffractometry(XRD), and Furier Transform Infrared spectrometry(FT-IR). The thermal stabilities of $Zn(BH_4)_2$ powders were studied by Differential scanning calorimetry(DSC), Thermogravimetry analysis(TGA), and Mass spectrometry(MS). $Zn(BH_4)_2$ can be tested for hydrogen evolution without further purification. The reaction to yield hydrogen is irreversible, the other products being compounds of Zn, and borane. $Zn(BH_4)_2$ thermally decomposes to release borane and hydrogen gas between about 85 and 150$^{\circ}C$.

삼중수소 저장용기 이종 접합부의 수소 취성 (Hydrogen Brittleness on Welding Part for SDS Bottles)

  • 김경일;정석;강현구;장민호;윤세훈;홍태환
    • 한국수소및신에너지학회논문집
    • /
    • 제24권2호
    • /
    • pp.121-127
    • /
    • 2013
  • Tritium was attracted with high energy source in neutron fusion energy systems. A number of research was performed in tritium storage materials. The Korea was raised storage and delivery systems (SDS) of international thermonuclear experimental reactor (ITER) research. However, bottles of SDS would be important because of stability. The bottles have a welding zone, this zone will be vulnerable to hydrogen embrittlement. This zone have a high thermodynamic energy and heat deterioration. Therefore bottles were studied about hydrogen embrittlement to retain stability. The heat treatment of hydrogen was carried under pressure-composition-temperature (PCT) apparatus because of checking at real time. And then, mechanical properties were evaluated by tensile test and hardness test. In results of this study, hydrogen atmosphere condition is very important by tensile test and kinetics test. The samples were evaluated, that is more weak hydrogen pressure, increasing temperature and time. This results could be useful in SDS bottle designs.

수소주입조건 변화에 따른 LaNi5합금의 특성변화 (The Changes of Hydrogenation Properties of LaNi5 alloy by Hydrogen Charging Condition)

  • 안효준
    • 한국수소및신에너지학회논문집
    • /
    • 제5권1호
    • /
    • pp.33-39
    • /
    • 1994
  • The changes of hydrogenation properties of $LaNi_5$ by hydrogen charging condition were investigated using the P-C-isotherm curves, DSC(Differential Scanning Calorimetry), GC(Gas Chromatograph), X-ray diffractometer. As a results of static hydrogen charging, the hydrogen storage capacity gradually decreased and the plateau region severly slopped. Most of the degraded properties could be restored by the annealing treatment. The degradation of hydrogen storage capacity was related with the formation of stable hydride, which was not dehydrided at room temperature.

  • PDF

Hydrogen Storage Properties of Pure MgH2

  • Kwak, Young Jun;Lee, Seong Ho;Park, Hye Ryoung;Song, Myoung Youp
    • 한국재료학회지
    • /
    • 제23권5호
    • /
    • pp.266-270
    • /
    • 2013
  • The hydrogen storage properties of pure $MgH_2$ were studied and compared with those of pure Mg. At the first cycle, pure $MgH_2$ absorbed hydrogen very slowly at 573 K under 12 bar $H_2$. The activation of pure $MgH_2$ was completed after three hydriding-dehydriding cycles. At the $4^{th}$ cycle, the pure $MgH_2$ absorbed 1.55 wt% H for 5 min, 2.04 wt% H for 10 min, and 3.59 wt% H for 60 min, showing that the activated $MgH_2$ had a much higher initial hydriding rate and much larger $H_a$ (60 min), quantity of hydrogen absorbed for 60 min, than did activated pure Mg. The activated pure Mg, whose activation was completed after four hydriding-dehydriding cycles, absorbed 0.80 wt% H for 5 min, 1.25 wt% H for 10 min, and 2.34 wt% H for 60 min. The particle sizes of the $MgH_2$ were much smaller than those of the pure Mg before and after hydriding-dehydriding cycling. The pure Mg had larger hydrogen quantities absorbed at 573K under 12 bar $H_2$ for 60 min, $H_a$ (60 min), than did the pure $MgH_2$ from the number of cycles n = 1 to n = 3; however, the pure $MgH_2$ had larger $H_a$ (60 min) than did the pure Mg from n = 4 to n = 6.

작용기를 치환한 Metal-Organic Frameworks 에 대한 DFT 연구 (A Density Functional Theory Study on a Series of Functionalized Metal-Organic Frameworks)

  • 김대진;이태범;최승훈;이은성;오유진;윤지혜;김자헌
    • 한국전기화학회:학술대회논문집
    • /
    • 한국전기화학회 2005년도 수소연료전지공동심포지움 2005논문집
    • /
    • pp.329-334
    • /
    • 2005
  • In order to find out rational design and synthetic strategies toward efficient hydrogen storage materials, we performed quantum mechanical calculations on a series of the Metal-Organic Frameworks (MOFs) containing functionalized organic linkers. Based on the shape of frontier orbitals and the electrostatic potential map of various MOFs from density functional theory calculations, it was found that the delocalization of electron and asymmetric polarization of the organic linker play an important role in the hydrogen storage capacity of Metal-Organic Frameworks. The prediction of the modeling study could be supported by the hydrogen adsorption experiments using MOF-5 and amine substituted MOF-5, which showed more enhanced hydrogen storage capacity of amine substituted MOF-5 compared with that of MOF-5.

  • PDF

Ni/MH 2차 전지용 고용량 Ti계 수소저장합금의 설계에 관한 연구 (A Study on the Alloy Design of High Capacity Ti-Based Metal Hydride for Ni/MH Rechargeable Battery)

  • 이한호;이재영
    • 한국수소및신에너지학회논문집
    • /
    • 제7권1호
    • /
    • pp.19-28
    • /
    • 1996
  • Ti-Mn based hydrogen storage alloy were modified by substituting alloying elements such as Zr, V and Ni in order to design a high capacity MH electrode for Ni/MH rechargeable battery. When V was substituted in Ti-Mn binary system, the crystal structure was maintained as $Cl_4$ Laves phase at a composition of $Ti_{0.2}V_{0.4}Mn_{0.4}$ and $Ti_{0.4}V_{0.2}Mn_{0.4}$ and equilibrium pressure decreased below 1 atm without decreasing hydrogen storage capacity considerably. It was found that Ni should be included in Ti-V-Mn alloy in order to hydrogenate it electrochemically in KOH electrolyte. But substitution of Ni for Mn in Ti-V-Mn system caused the increase of equilibrium pressure above 1atm and decrease of hydrogen storage capacity. Zr was able to increase the reversible hydrogen storage capacity of Ti-V-Mn-Ni alloy without considerable change of hydrogenation properties. The electrochemical discharge capacity of Ti-Zr-V-Mn-Ni system were in the range of 350 - 464mAh/g and among them $Ti_{0.8}Zr_{0.2}V_{0.5}Mn_{0.5}Ni_{1.0}$ alloy had $Cl_4$ Laves single phase and very high electrochemical discharge capacity of 464mAh/g.

  • PDF

A Study on the Electrode Characteristics of Hypo-Stoichiometric Zr-based Hydrogen Storage Alloys

  • Lee, Sang-Min;Kim, Seoung-Hoe;Lee, Jai-Young
    • 한국수소및신에너지학회논문집
    • /
    • 제10권4호
    • /
    • pp.197-210
    • /
    • 1999
  • The hydrogen storage performance and electrochemical properties of $Zr_{1-X}Ti_X(Mn_{0.2}V_{0.2}Ni_{0.6})_{1.8}$(X=0.0, 0.2, 0.4, 0.6) alloys are investigated. The relationship between discharge performance and alloy characteristics such as P-C-T characteristics and crystallographic parameters is also discussed. All of these alloys are found to have mainly a C14-type Laves phase structure by X-ray diffraction analysis. As the mole fraction of Ti in the alloy increases, the reversible hydrogen storage capacity decreases while the equilibrium hydrogen pressure of alloy increases. Furthermore, the discharge capacity shows a maxima behavior and the rate-capability is increased, but the cycling durability is rapidly degraded with increasing Ti content in the alloy. In order to analyze the above phenomena, the phase distribution, surface composition, and dissolution amount of alloy constituting elements are examined by S.E.M., A.E.S. and I.C.P. respectively. The decrease of secondary phase amount with increasing Ti content in the alloy explains that the micro-galvanic corrosion by multiphase formation is little related with the degradation of the alloys. The analysis of surface composition shows that the rapid degradation of Ti-substituted Zr base alloy electrode is due to the growth of oxygen penetration layer. After comparing the radii of atoms and ions in the electrolyte, it is clear that the electrode surface becomes more porous, and that is the source of growth of oxygen penetration layer while accelerating the dissolution of alloy constituting elements with increasing Ti content. Consequently, the rapid degradation (fast growth of the oxygen-penetrated layer) with increasing Ti substitution in Zr-based alloy is ascribed to the formation of porous surface oxide through which the oxygen atom and hydroxyl ion with relatively large radius can easily transport into the electrode surface.

  • PDF