DOI QR코드

DOI QR Code

High Hydrogen Capacity and Reversibility of K-Decorated Silicon Materials

  • Park, Min-Hee (Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Ryu, Seol (Department of Chemistry, Chosun University) ;
  • Han, Young-Kyu (Division of Materials Science, Korea Basic Science Institute (KBSI)) ;
  • Lee, Yoon-Sup (Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST))
  • Received : 2011.11.15
  • Accepted : 2012.02.23
  • Published : 2012.05.20

Abstract

We have investigated the $H_2$ adsorption structures and binding energies of the metal (M)-doped (M = Li, Na, K, Mg, and Al) silicon complexes, $M-Si_{19}H_{11}$ and $M-Si_{24}H_{12}$, using density functional calculations. Alkali metals are preferred as doping elements because the Mg-Si and Al-$H_2$ interactions are weak. The maximum numbers of $H_2$ molecules that can be adsorbed are four and five for M=Li and K, respectively. We propose that the K-decorated silicon material might be an effective hydrogen storage material with high hydrogen capacity and high reversibility.

Keywords

References

  1. Coontz, R.; Hanson, B. Science 2004, 305, 957. https://doi.org/10.1126/science.305.5686.957
  2. Crabtree, G. W.; Dresselhaus, M. S.; Buchanan, M. V. Phys. Today 2004, 57, 39. https://doi.org/10.1063/1.1878333
  3. Schlapbach, L.; Zuttel, A. Nature 2001, 414, 353. https://doi.org/10.1038/35104634
  4. Zuttel, A. Mater. Today 2003, 6, 24.
  5. Fichtner, M. Adv. Eng. Mater. 2005, 7, 443. https://doi.org/10.1002/adem.200500022
  6. Liu, C.; Fan, Y. Y.; Liu, M.; Cong, H. T.; Cheng, H. M.; Dresselhaus, M. S. Science 1999, 286, 1127. https://doi.org/10.1126/science.286.5442.1127
  7. Chen, P.; Wu, X.; Lin, J.; Tan, K. L. Science 1999, 285, 91. https://doi.org/10.1126/science.285.5424.91
  8. Sun, Q.; Wang, Q.; Jena, P. Nano. Lett. 2005, 5, 1273. https://doi.org/10.1021/nl050385p
  9. Chen, P.; Xiong, Z. T.; Luo, L. Z.; Lin, J. Y.; Tan, K. L. Nature 2002, 420, 302. https://doi.org/10.1038/nature01210
  10. Cho, J. H.; Park, C. R. Catal. Today 2007, 120, 407. https://doi.org/10.1016/j.cattod.2006.09.027
  11. Durgun, E.; Ciraci, S.; Yildirim, T. Phys. Rev. B 2008, 77, 085405. https://doi.org/10.1103/PhysRevB.77.085405
  12. Chandrakumar, K. R. S.; Ghosh, S. K. Nano. Lett. 2008, 8, 13. https://doi.org/10.1021/nl071456i
  13. Kuc, A.; Zhechkov, L.; Patchkovskii, S.; Seifert, G.; Heine, T. Nano. Lett. 2007, 7, 1. https://doi.org/10.1021/nl0619148
  14. Cabria, I.; Lopez, M. J.; Alonso, J. A. J. Chem. Phys. 2005, 123, 204721.
  15. Park, N.; Hong, S.; Kim, G.; Jhi, S. H. J. Am. Chem. Soc. 2007, 129, 8999. https://doi.org/10.1021/ja0703527
  16. Chen, L.; Zhang, Y.; Koratkar, N.; Jena, P.; Nayak, S. K. Phys. Rev. B 2008, 77, 033405.
  17. Barnard, A. S.; Russo, S. P. J. Phys. Chem. B 2003, 107, 7577. https://doi.org/10.1021/jp0347421
  18. Fagan, S. B.; Baierle, R. J.; Mota, R.; da Silva, A. J. R.; Fazzio, A. Phys. Rev. B 2000, 61, 9994. https://doi.org/10.1103/PhysRevB.61.9994
  19. Fagan, S. B.; Mota, R.; Baierle, R. J.; Paiva, G.; da Silva, A. J. R.; Fazzio, A. J. Mol. Struc. (THEOCHEM) 2001, 539, 101. https://doi.org/10.1016/S0166-1280(00)00777-6
  20. Lan, J. H.; Cheng, D. J.; Cao, D. P.; Wang, W. C. J. Phys. Chem. C 2008, 112, 5598. https://doi.org/10.1021/jp711754h
  21. Zhang, M.; Kan, Y. H.; Zang, O. J.; Su, J. M.; Wang, R. S. Chem. Phys. Lett. 2003, 379, 81. https://doi.org/10.1016/j.cplett.2003.08.030
  22. Zhang, R. Q.; Lee, H. L.; Li, W. K.; Teo, B. K. J. Phys. Chem. B 2005, 109, 8605. https://doi.org/10.1021/jp045682h
  23. Zhang, R. Q.; Lee, S. T.; Law, C. K.; Li, W. K.; Teo, B. K. Chem. Phys. Lett. 2002, 364, 251. https://doi.org/10.1016/S0009-2614(02)01334-9
  24. Perdew, J. P.; Wang, Y. Phys. Rev. B 1992, 45, 13244. https://doi.org/10.1103/PhysRevB.45.13244
  25. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, revision E.01; Gaussian, Inc.: Wallingford CT, 2004.