DOI QR코드

DOI QR Code

Theoretical Explanation of the Peak Splitting of Tobacco-Specific N-Nitrosamines in HPLC

  • Jiang, Juxing (Technology Center, Hongyun-Honghe Tobacco (Group) Co., Ltd.) ;
  • Li, Liangchun (Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University) ;
  • Wang, Mingfeng (Technology Center, Hongyun-Honghe Tobacco (Group) Co., Ltd.) ;
  • Xia, Jianjun (Technology Center, Hongyun-Honghe Tobacco (Group) Co., Ltd.) ;
  • Wang, Wenyuan (Technology Center, Hongyun-Honghe Tobacco (Group) Co., Ltd.) ;
  • Xie, Xiaoguang (Department of Chemistry, Yunnan University)
  • Received : 2011.11.30
  • Accepted : 2012.02.23
  • Published : 2012.05.20

Abstract

During the analyzing processes of the compounds, some researchers are puzzled by the analytical signals for some TSNAs (with or without splitting peaks at various pHs and temperatures). In this work, a detailed theoretical study of structural and thermal properties of the $E/Z$ isomers of TSNAs and the corresponding protonated structures was performed using DFT methods. The calculations showed that the $E$ isomers are almost stable than $Z$ isomers, while the $Z$ isomers would be more stable when in protonation. The calculated results predicted the possibility of separation of their $E$ and $Z$ isomer forms and also showed that protonation affects the dipole moment of molecules significantly (0.1-0.5 to 0.7-2.1 Debye). The calculations agreed well with the experiments that the split-up of the HPLC signal for TSNAs into two peaks are very sensitive to the pH and temperature of the mobile-phase.

Keywords

References

  1. Shah, K. A.; Karnes, H. T. Crit. Rev. Toxicol. 2010, 40, 305. https://doi.org/10.3109/10408440903394435
  2. Shah, K. A.; Peoples, M. C.; Halquist, M. S.; Rutan, S. C.; Karnes, H. T. J. Pharmaceut. Biomed. 2011, 54, 368. https://doi.org/10.1016/j.jpba.2010.09.001
  3. Yang, Y.; Nie, H.; Li, C.; Bai, Y.; Li, N.; Liao, J.; Liu, H. Talanta 2010, 82, 1797. https://doi.org/10.1016/j.talanta.2010.07.075
  4. Kavvadias, D.; Scherer, G.; Urban, M.; Cheung, F.; Errington, G.; Shepperd, J.; McEwan, M. J. Chromatogr. B 2009, 877, 1185. https://doi.org/10.1016/j.jchromb.2009.03.009
  5. Carmella, S. G.; Ye, M.; Upadhyaya, P.; Hecht, S. S. Cancer Res. 1999, 59, 3602.
  6. Clayton, P. M.; Cunningham, A.; van Heemst, J. D. H. Anal. Methods 2010, 2, 1085. https://doi.org/10.1039/b9ay00306a
  7. Sleiman, M.; Maddalena, R. L.; Gundel, L. A.; Destaillats, H. J. Chromatogr. A 2009, 1216, 7899. https://doi.org/10.1016/j.chroma.2009.09.020
  8. Li, C.; Chen, Z.; Wen, D.; Zhang, J.; Cong, W.; Yu, B.; Liao, Y.; Liu, H. Electrophoresis 2006, 27, 2152. https://doi.org/10.1002/elps.200600009
  9. Jansson, C.; Paccou, A.; Osterdahl, B. G. J. Chromatogr. A 2003, 1008, 135. https://doi.org/10.1016/S0021-9673(03)00981-6
  10. Trushin, N.; Leder, G.; El-Bayoumy, K.; Hoffmann, D.; Beger, H.; Henne-Bruns, D.; Ramadani, M.; Prokopczyk, B. Langenbecks Arch. Surg. 2008, 393, 571. https://doi.org/10.1007/s00423-007-0265-3
  11. Breyer-Pfaff, U.; Martin, H.-J.; Ernst, M.; Maser, E. Drug Metab. Dispos. 2004, 32, 915.
  12. McCorquodale, E. M.; Boutrid, H.; Colyer, C. L. Anal. Chim. Acta 2003, 496, 177. https://doi.org/10.1016/S0003-2670(03)00998-X
  13. Hecht, S. S.; Spratt, T. E.; Trushin, N. Carcinogenesis 1997, 18, 1851. https://doi.org/10.1093/carcin/18.9.1851
  14. Wu, W.; Ashley, D. L.; Watson, C. H. Anal. Chem. 2003, 75, 4827. https://doi.org/10.1021/ac030135y
  15. Roohi, H.; Deyhimi, F.; Ebrahimi, A. J. Mol. Struct. (Theochem) 2001, 543, 299. https://doi.org/10.1016/S0166-1280(01)00366-9
  16. Roohi, H.; Deyhimi, F.; Ebrahimi, A.; Khanmohammady, A. J. Mol. Struct. (Theochem) 2005, 718, 123. https://doi.org/10.1016/j.theochem.2005.01.001
  17. Chow, Y. L.; Colon, C. J. Can. J. Chem. 1968, 46, 2827. https://doi.org/10.1139/v68-468
  18. do Monte, S. A.; Ventura, E.; da Costa, T. F.; Santana, S. R. D. Struct. Chem. 2011, 22, 497. https://doi.org/10.1007/s11224-010-9721-8
  19. Novak, I.; Kovac, B. Chem. Phys. Lett. 2007, 445, 129. https://doi.org/10.1016/j.cplett.2007.08.022
  20. Miura, M.; Sakamoto, S.; Yamaguchi, K.; Ohwada, T. Tetrahedron Lett. 2000, 41, 3637. https://doi.org/10.1016/S0040-4039(00)00431-7
  21. Carmella, S. G.; McIntee, E. J.; Chen, M.; Hecht, S. S. Carcinogenesis 2000, 21, 839. https://doi.org/10.1093/carcin/21.4.839
  22. Gaussian 03, Revision E.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian, Inc.: Wallingford CT, 2004.
  23. Tong, X. G.; Wu, G. S.; Huang, C. G.; Lu, Q.; Wang, Y. H.; Long, C. L.; Luo, H. R.; Zhu, H. J.; Cheng, Y. X. J. Nat. Prod. 2010, 73, 1160. https://doi.org/10.1021/np900793e
  24. Li, L. C.; Ren, J.; Liao, T. G.; Jiang, J. X.; Zhu, H. J. Eur. J. Org. Chem. 2007, 1026.
  25. Zhao, Y.; Schultz, N. E.; Truhlar, D. G. J. Chem. Phys. 2005, 123, 161103. https://doi.org/10.1063/1.2126975
  26. Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899. https://doi.org/10.1021/cr00088a005
  27. Martin, F.; Zipse, H. J. Comput. Chem. 2005, 26, 97. https://doi.org/10.1002/jcc.20157
  28. Hwang, S.; Jiang, Y. H.; Chung D. S. Bull. Korean Chem. Soc. 2005, 26, 585.
  29. Krebs, B.; Mandt, J. Chem. Ber. 1975, 108, 1130. https://doi.org/10.1002/cber.19751080419
  30. Ohwada, T.; Miura, M.; Tanaka, H.; Sakamoto, S.; Yamaguchi, K.; Ikeda, H.; Inagaki, S. J. Am. Chem. Soc. 2001, 123, 10164. https://doi.org/10.1021/ja010917d

Cited by

  1. Matrix-Bound 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone in Tobacco: Quantification and Evidence for an Origin from Lignin-Incorporated Alkaloids vol.78, pp.1, 2015, https://doi.org/10.1021/np500725a
  2. Antifungal constituents from Nicotiana tabacum with the Wz locus infected by Phytophthora nicotianae vol.3, pp.None, 2012, https://doi.org/10.1016/j.rechem.2021.100196