• Title/Summary/Keyword: Density functional calculation

Search Result 122, Processing Time 0.023 seconds

Dynamics Study with DFT(Density Functional Theory) Calculation for Metal with a few Peripheral Electrons (범밀도함수론을 이용한 백금, 팔라듐, 니켈, 크롬과 수소반응성 연구)

  • Kim, Taewan;Park, Taesung;Jung, Yeonsung;Kang, Youngjin;Lee, Taeckhong
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.3
    • /
    • pp.234-239
    • /
    • 2014
  • To study catalytic activity and hydrogen embrittlement of Pd, Pt, Ni, and Cr in fuel cell electrode, we used density-functional theory. The calculation tools based electron density give much shorter calculation time and cheap costs. Maximum of bond overlap populations of each metal are 0.6539eV for Pd-H, 0.6711eV for Pt-H, 0.6323eV for Ni-H, 0.6152eV for Cr-H. Electron density of Cr has strongest in related metals, which shows strong localization of electron, implying anti hydrogen embrittlement behaviors.

Molecular Structure and Vibrational Spectra of 9-Fluorenone Density Functional Theory Study

  • 이상연;부봉현
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.8
    • /
    • pp.760-764
    • /
    • 1996
  • The molecular geometry and vibrational frequencies of 9-fluorenone have been calculated using the Hartree-Fock and Becke-3-Lee-Yang-Parr(B3LYP) density functional methods with 6-31G* basis set. Harmonic vibrational frequencies obtained from the B3LYP calculation show good agreement with the available experimental data. A few vibrational fundamentals are newly assigned based on the B3LYP results. The B3LYP calculation is reconfirmed to be useful in the assignment of the fundamental vibrational frequencies.

Dissociation Curves of Transition Metal Compounds

  • Go, Dong-Hyeok;Song, Su-Hwan;Sim, Eun-Ji
    • Proceeding of EDISON Challenge
    • /
    • 2017.03a
    • /
    • pp.11-15
    • /
    • 2017
  • We present a study of transition metal compounds using density functional theory (DFT), and density-corrected density functional theory(DC-DFT). By replacing the self-consistent density with that obtained from Hartree-Fock calculation, i.e., HF-DFT, the abnormality driven by self-interaction error is removed in several important cases. We discuss when and how HF-DFT works by examining 3d orbital dimers using approximate functionals and by comparing the results from self-consistent-DFT and HF-DFT with experimental values.

  • PDF

Comparative studies of density functionals in modelling hydrogen bonding energetics of acrylamide dimers

  • Lin, Yi-De;Wang, Yi-Siang;Chao, Sheng D.
    • Coupled systems mechanics
    • /
    • v.6 no.3
    • /
    • pp.369-376
    • /
    • 2017
  • Intermolecular interaction energies and conformer geometries of the hydrogen bonded acrylamide dimers have been studied by using the second-order Møller-Plesset (MP2) perturbation theory and the density functional theory (DFT) with 17 density functionals. Dunning's correlation consistent basis sets (up to aug-cc-pVTZ) have been used to study the basis set effects. The DFT calculated interaction energies are compared to the reference energy data calculated by the MP2 method and the coupled cluster method at the complete basis set (CCSD(T)/CBS) limit in order to determine the relative performance of the studied density functionals. Overall, dispersion-energy-corrected density functionals outperform uncorrected ones. The ${\omega}B97XD$ density functional is particularly effective in terms of both accuracy and computational cost in estimating the reference energy values using small basis sets and is highly recommended for similar calculations for larger systems.

Interactive CO2 Adsorption on the BaO (100) Surface: A Density Functional Theory (DFT) Study

  • Kwon, Soon-Chul;Hwang, Jung-Bae;Lee, Han-Lim;Lee, Wang-Ro
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.8
    • /
    • pp.2219-2222
    • /
    • 2010
  • A density functional theory (DFT) study of $CO_2$ adsorption on barium oxide (BaO) adsorbents is conducted to understand the chemical activity of the oxygen site on the BaO (100) surface. This study evaluated the adsorption energies and geometries of a single $CO_2$ molecule and a pair of $CO_2$ molecules on the BaO (100) surface. A quantum calculation was performed to obtain information on the molecular structures and molecular reaction mechanisms; the results of the calculation indicated that $CO_2$ was adsorbed on BaO to form a stable surface carbonate with strong chemisorption. To study the interactive $CO_2$ adsorption on the BaO (100) surface, a pair of $CO_2$ molecules was bound to neighboring and distant oxygen sites. The interactive $CO_2$ adsorption on the BaO surface was found to slightly weaken the adsorption energy, owing to the interaction between $CO_2$ molecules.

Spin-Orbit Density Functional Theory Calculations for TlAt with Relativistic Effective Core Potentials

  • Choi, Yoon-Jeong;Bae, Cheol-Beom;Lee, Yoon-Sup;Lee, Sang-San
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.6
    • /
    • pp.728-730
    • /
    • 2003
  • Bond lengths, harmonic vibrational frequencies and dissociation energies of TlAt are calculated at ab initio molecular orbital and density functional theory using effective spin-orbit operator and relativistic effective core potentials. Spin-orbit effects estimated from density functional theory are in good agreement with those from ab initio calculations, implying that density functional theory with effective core potentials can be an efficient and reliable methods for spin-orbit interactions. The estimated $R_e$, $ω_e$ and $D_e$ values are 2.937 ${\AA}$, 120 $cm^{-1}$, 1.96 eV for TlAt. Spin-orbit effects generally cause the bond contraction in Group 13 elements and the bond elongation in the Group 17 elements, and spin-orbit effects on Re of TlAt are almost cancelled out. The spinorbit effects on $D_e$ of TlAt are roughly the sum of spin-orbit effects on $D_e$ of the corresponding element hydrides. Electron correlations and spin-orbit effects are almost additive in the TlAt molecule.

Electronic State of ZnO doped with Al, Ga and In, Calculated by Density Functional Theory (범함수궤도법을 이용하여 계산한 Al, Ga, In이 도핑된 ZnO의 전자상태)

  • Lee, Dong-Yoon;Lee, Won-Jae;Song, Jae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.218-221
    • /
    • 2004
  • The electronic state of ZnO doped with Al, Ga and In, which belong to III family elements in periodic table, was calculated using the density functional theory. In this study, the program used for the calculation on theoretical structures of ZnO and doped ZnO was Vienna Ab-initio Simulation Package (VASP), which is a sort of pseudo potential method. The detail of electronic structure was obtained by the describe variational $X{\alpha}(DV-X{\alpha})$(DV-Xa) method, which is a sort of molecular orbital full potential method. The optimized crystal structures obtained by calculations were compared to the measured structure. The density of state and energy levels of dopant elements was shown and discussed in association with properties.

  • PDF

Molecular Structure and Vibrational Spectra of Biphenyl in the Ground and the Lowest Triplet States. Density Functional Theory Study

  • 이상연
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.1
    • /
    • pp.93-98
    • /
    • 1998
  • The molecular geometries and harmonic vibrational frequencies of biphenyl in the ground and the first excited triplet states have been calculated using the Hartree-Fock and Becke-3-Lee-Yang-Parr (B3LYP) density functional methods with 6-31G* basis set. Structural change occurs from a twisted benzene-like to a planar quinone-like form upon the excitation to the first excited state. Scaled harmonic vibrational frequencies for the ground state obtained from the B3LYP calculation show good agreement with the available experimental data. A few vibrational fundamentals for both states are newly assigned based on the B3LYP results.