• 제목/요약/키워드: hydrogen gas sensors

검색결과 109건 처리시간 0.023초

감지 패턴 인식에 의한 가스센서의 선택성 연구 (A Study on the Selectivity of Gas Sensors by Sensing Pattern Recognition)

  • 이성필
    • 센서학회지
    • /
    • 제20권6호
    • /
    • pp.428-433
    • /
    • 2011
  • We report on the building of a micro sensor array based on typical semiconductor fabrication processes aimed at monitoring selectively a specific gas in ambient of other gases. Chemical sensors can be applied for an electronic nose and/or robots using this technique. Microsensor array was fabricated on the same chip using 0.6${\mu}m$ CMOS technology, and unique gas sensing patterns were obtained by principal component analysis from the array. $SnO_2$/Pt sensor for CO gas showed a high selectivity to buthane gas and humidity. $SnO_2$ sensor for hydrogen gas, however, showed a low selectivity to CO and buthane gas. We can obtain more distinguishable patterns that provide the small sensing deviation(the high seletivity) toward a given analyte in the response space than in the chemical space through the specific parameterization of raw data for chemical image formation.

PdO 박막의 환원과 환원된 Pd박막의 수소 감지 특성 (A Reduction Process of Palladium Oxide Thin Films and Hydrogen Gas Sensing Properties of Reduced Palladium Thin Films)

  • 이영택;김연주;이준민;조진현;이우영
    • 대한금속재료학회지
    • /
    • 제48권4호
    • /
    • pp.347-352
    • /
    • 2010
  • This study reports a novel method off abricating highly sensitive hydrogen gas sensors based on PdO thin films. The PdO thin films with a thickness of 40 nm were deposited on Si substrates under Ar and $O_2$ ambient conditions using a reactive de magnetron sputtering system. Considerable changes in the resistance of the palladium oxide thin films were observed when they were initially exposed to hydrogen gas, as a result of the reduction process. The sensitivity of the PdO thin films was found to be as high as 90%. After the thin films were exposed to hydrogen gas, the nano-sized cracks were discovered to have formed on the surface of the PdO thin films. These types of nano-cracks that formed on the deoxidized PdO thin films are known to play a key role incausing a four-fold reduction of the response time of the absorption process. The results of this study demonstrate that deoxidized PdO thin films can be applied for use in the creation of high-sensitivity hydrogen sensors.

SiC 기판상에 반응 스퍼터링에 의해 형성된 TiO2막의 수소가스 검지 특성 (Hydrogen Detection of Titanium Dioxide Layer Formed by Reactive Sputtering on SiC Substrates)

  • 김성진
    • 한국전기전자재료학회논문지
    • /
    • 제29권12호
    • /
    • pp.809-813
    • /
    • 2016
  • We investigated a SiC-based hydrogen gas sensor with MIS (metal-insulator-semiconductor) structure for high temperature applications. The sensor was fabricated by $Pd/TiO_2/SiC$ structure, and a thin titanium dioxide ($TiO_2$) layer was exploited for sensitivity improvement. In the experiment, dependences of I-V characteristics and capacitance response properties on hydrogen gas concentrations from 0 to 2,000 ppm were analyzed at room temperature to $400^{\circ}C$. As the result, our sensor using $TiO_2$ dielectric layer showed possibilities with regard to use in hydrogen gas sensors for high-temperature applications.

팔라듐이 코팅된 광섬유 격자를 이용한 절연유속의 용존 수소가스 검출 (Detection of Hydrogen Gas Dissolved in Insulation Oil Based on Palladium-coated Fiber Bragg Grating)

  • 김광택;최누리;백세종
    • 센서학회지
    • /
    • 제27권6호
    • /
    • pp.403-406
    • /
    • 2018
  • We have investigated a fiber-optic sensor for detecting the hydrogen gas dissolved in insulation oil based on a palladium (Pd)-coated fiber Bragg grating (FBG). As the palladium absorbs the hydrogen gas dissolved in the insulation oil, its volume expands and the Bragg wavelength shifts to a longer wavelength. The experimental results showed that the Bragg wavelength of FBG increased to 70 nm when the concentration of hydrogen dissolved in the insulation oil was 409 ppm.

감지막으로 Ta2O5를 이용한 정전용량형 수소 가스센서 (Capacitive-type Hydrogen Gas Sensor Using Ta2O5 as Sensitive Layer)

  • 최제훈;김성진
    • 한국전기전자재료학회논문지
    • /
    • 제26권12호
    • /
    • pp.882-887
    • /
    • 2013
  • We investigated a SiC-based hydrogen gas sensor with metal-insulator-semiconductor (MIS) structure for high temperature process monitoring and leak detection applications. The sensor was fabricated by Pd/$Ta_2O_5$/SiC structure, and a thin tantalum oxide ($Ta_2O_5$) layer was exploited with the purpose of sensitivity improvement, because tantalum oxide has good stability at high temperature as well as high permeability for hydrogen gas. In the experiment, dependence of I-V characteristics and capacitance response properties on hydrogen gas concentrations from 0 to 2,000 ppm was analyzed at room temperature to $500^{\circ}C$. As the result, our sensor exploiting a $Ta_2O_5$ dielectric layer showed possibilities with regard to use in hydrogen gas sensors for high-temperature applications.

A Study on Pattern Analysis of Odorous Substances with a Single Gas Sensor

  • Kim, Han-Soo;Choi, Il-Hwan;Kim, Sun-Tae
    • 센서학회지
    • /
    • 제25권6호
    • /
    • pp.423-430
    • /
    • 2016
  • This study used a single metal oxide semiconductor (MOS) sensor to classify the major odorous gases hydrogen sulfide ($H_2S$), ammonia ($NH_3$) and toluene ($C_6H_5CH_3$). In order to classify these odorous substances, the voltage on the MOS sensor heater was gradually reduced in 0.5 V steps 5.0 V to examine the changes to the response by the cooling effect on the sensor as the voltage decreased. The hydrogen sulfide gas showed the highest sensitivity compared to odorless air under approximately 2.5 V and the ammonia and toluene gases showed the highest sensitivity under approximately 5.0 V. In other words, the hydrogen sulfide gas reacted better in the low temperature range of the MOS sensor, and the ammonia and toluene gases reacted better in the high-temperature range. In order to analyze the response characteristics of the MOS sensor by temperature in a pattern, a two-dimensional (2D) x-y pattern analysis was introduced to clearly classify the hydrogen sulfide, ammonia, and toluene gases. The hydrogen sulfide gas was identified by a straight line with a slope of 1.73, whereas the ammonia gas had a slope of 0.05 and the toluene gas had a slope of 0.52. Therefore, the 2D x-y pattern analysis is suggested as a new way to classify these odorous substances.

p-CuO/n-ZnO 이종접합 박막 구조의 수소 가스 특성 평가 (Hydrogen Gas Sensor Performance of a p-CuO/n-ZnO Thin-film Heterojunction)

  • 양이준;맹보희;정동건;이준엽;김영삼;안희경;정대웅
    • 센서학회지
    • /
    • 제31권5호
    • /
    • pp.337-342
    • /
    • 2022
  • Hydrogen (H2) gas is widely preferred for use as a renewable energy source owing to its characteristics such as environmental friendliness and a high energy density. However, H2 can easily reverse or explode due to minor external factors. Therefore, H2 gas monitoring is crucial, especially when the H2 concentration is close to the lower explosive limit. In this study, metal oxide materials and their p-n heterojunctions were synthesized by a hydrothermal-assisted dip-coating method. The synthesized thin films were used as sensing materials for H2 gas. When the H2 concentration was varied, all metal oxide materials exhibited different gas sensitivities. The performance of the metal oxide gas sensor was analyzed to identify parameters that could improve the performance, such as the choice of the metal oxide material, effect of the p-n heterojunctions, and operating temperature conditions of the gas sensor. The experimental results demonstrated that a CuO/ZnO gas sensor with a p-n heterojunction exhibited a high sensitivity and fast response time (134.9% and 8 s, respectively) to 5% H2 gas at an operating temperature of 300℃.

수소 감지 성능 향상을 위한 Pd/TiO2 분말에서의 Al 도핑 효과 (Al Doping Effect of Pd/TiO2 for Improved Hydrogen Detection)

  • 이영안;서형탁
    • 센서학회지
    • /
    • 제23권3호
    • /
    • pp.207-210
    • /
    • 2014
  • $TiO_2$ oxide semiconductor is being widely studied in various applications such as photocatalyst and photosensor. Pd/$TiO_2$ gas sensor is mainly used to detect $H_2$, CO and ethanol. This study focus on increasing hydrogen detection ability of Pd/$TiO_2$ in room temperature through Al-doping. Pd/$TiO_2$ was fabricated by the hydrothermal method. Contacting to Aluminum (Al) foil led to Al doping effect in Pd/$TiO_2$ by thermal diffusion and enhanced hydrogen sensing response. $TiO_2$ nanoparticles were sized at ~30 nm of diameter from scanning electron microscope (SEM) and maintained anatase crystal structure after Al doping from X-ray diffraction analysis. Presence of Al in $TiO_2$ was confirmed by X-ray photoelectron spectroscopy at 73 eV. SEM-energy dispersive spectroscopy measurement also confirmed 2 wt% Al in Pd/$TiO_2$ bulk. The gas sensing test was performed with $O_2$, $N_2$ and $H_2$ gas ambient. Pd/Al-doped $TiO_2$ did not response $O_2$ and $N_2$ gas in vacuum except $H_2$. Finally, the normalized resistance ratio ($R_{H2on}/R_{H2off}$) of Pd/Al-doped $TiO_2$ increases about 80% compared to Pd/$TiO_2$.

산화물 반도체를 이용한 최신 호기센서 기술 동향 (Recent Developments in Metal Oxide Gas Sensors for Breath Analysis)

  • 윤지욱;이종흔
    • 세라미스트
    • /
    • 제22권1호
    • /
    • pp.70-81
    • /
    • 2019
  • Breath analysis is rapidly evolving as a non-invasive disease recognition and diagnosis method. Metal oxide gas sensors are one of the most ideal platforms for realizing portable, hand-held breath analysis devices in the near future. This paper reviewed the recent developments in metal oxide gas sensors detecting exhaled biomarker gases such as nitric oxides, acetone, ammonia, hydrogen sulfide, and hydrocarbons. Emphasis was placed on strategies to tailor sensing materials/films capable of highly selective and sensitive detection of biomarker gases with negligible cross-response to ethanol, the major interfering breath gas. Specific examples were given to highlight the validity of the strategies, which include optimization of sensing temperature, doping additives, utilizing acid-base interaction, loading catalysts, and controlling gas reforming reaction. In addition, we briefly discussed the design and optimization method of gas sensor arrays for implementing the simultaneous assessment of multiple diseases. Breath analysis using high-performance metal oxide gas sensors/arrays will open new roads for point-of-care diagnosis of diseases such as asthma, diabetes, kidney dysfunction, halitosis, and lung cancer.