DOI QR코드

DOI QR Code

Capacitive-type Hydrogen Gas Sensor Using Ta2O5 as Sensitive Layer

감지막으로 Ta2O5를 이용한 정전용량형 수소 가스센서

  • Choi, Je-Hoon (Department of Electronic Engineering, Kyungnam University) ;
  • Kim, Seong-Jeen (Department of Electronic Engineering, Kyungnam University)
  • 최제훈 (경남대학교 전자공학과) ;
  • 김성진 (경남대학교 전자공학과)
  • Received : 2013.10.30
  • Accepted : 2013.11.06
  • Published : 2013.12.01

Abstract

We investigated a SiC-based hydrogen gas sensor with metal-insulator-semiconductor (MIS) structure for high temperature process monitoring and leak detection applications. The sensor was fabricated by Pd/$Ta_2O_5$/SiC structure, and a thin tantalum oxide ($Ta_2O_5$) layer was exploited with the purpose of sensitivity improvement, because tantalum oxide has good stability at high temperature as well as high permeability for hydrogen gas. In the experiment, dependence of I-V characteristics and capacitance response properties on hydrogen gas concentrations from 0 to 2,000 ppm was analyzed at room temperature to $500^{\circ}C$. As the result, our sensor exploiting a $Ta_2O_5$ dielectric layer showed possibilities with regard to use in hydrogen gas sensors for high-temperature applications.

Keywords

References

  1. G. Eranna, B. C. Joshi, D. P. Runthala, and R. P. Gupta, Critical Rev. in Sol. Stat. and Mater. Sci., 29, 111 (2004). https://doi.org/10.1080/10408430490888977
  2. L. Promsong, and M. Sriyudthsak, Sens. Actuators, B25, 504 (1995).
  3. S. J. Kim, J. of IEEE Sensors, 10, 3505 (2009).
  4. J. Kanungo, H. Saha, and S. Basu, Sens. Actuat., B 147, 145 (2010).
  5. R. N. Ghosh, and P. Tobias, J. of Electron. Mater., 34, 345 (2005). https://doi.org/10.1007/s11664-005-0108-3
  6. A. L. Spetz, A. Baranzahi, P. Tobias, and I. Lundstrom, Phys. Stat. Sol., A162, 493 (1997).
  7. A. Trinchi, S. Kandasamy, and W. Wlodarski, Sens. Actuat., B133, 705 (2008).
  8. M. T. Soo, K. Y. Cheng, and A. Noor, Sens. Actuat., B151, 39 (2010).
  9. N. G. Wright, and A. B. Horsfall, J. of Phys. D: Appl. Phys., 40, 6345 (2007). https://doi.org/10.1088/0022-3727/40/20/S17
  10. L. P. Martin, A-Q Pham, and R. S. Glass, Solid Stat. Ion., 175, 527 (2004). https://doi.org/10.1016/j.ssi.2004.04.042
  11. V. Arakelyan, V. Galstyan, Kh.S. Martirosyan, G. Shahnazaryan, V. Aroutiounian, and P. Soukiassian, Physica, E38, 219 (2007).
  12. A. Kumar, P. Zhang, A. Vincent, R. McCormack, R. Kalyanaraman, H. J. Cho, and S. Seal, Sens. Actuat., B155, 884 (2011).
  13. C. Lu, and Z. Chen, Int. J. Hydrogen Energy, 35, 12561 (2010). https://doi.org/10.1016/j.ijhydene.2010.08.031
  14. C. Loa, S. W. Tan, C. Y. Wei, J. H. Tsai, and W. S. Lour, Int. J. Hydrogen Energy, 38, 313 (2013). https://doi.org/10.1016/j.ijhydene.2012.10.051
  15. C. Lu, and Z. Chen, Sens. Actuat., B140, 109 (2009).
  16. C. Chaneliere, J. L. Autran, R. A. Devine, and B. Balland, Mater. Sci. and Eng., R22, 269 (1998).
  17. J. Robertson and C. W. Chen, Appl. Phys. Lett., 74, 1168 (1999). https://doi.org/10.1063/1.123476