• 제목/요약/키워드: hydrogen fuel cell vehicle

검색결과 208건 처리시간 0.02초

퍼지 제어를 이용한 수소 상용차 전력 분배 시뮬레이션 (Commercial Hydrogen Vehicle Power Distribution Simulation Using Fuzzy Control)

  • 한재수;한재수;우종빈;유상석
    • 한국수소및신에너지학회논문집
    • /
    • 제34권4호
    • /
    • pp.369-380
    • /
    • 2023
  • There is no clear standard for estimating the power distribution of fuel cells and batteries to meet the required power in hydrogen electric vehicles. In this study, a hydrogen electric vehicle simulation model equipped with a vehicle electric component model including a fuel cell system was built, and a power distribution strategy between fuel cells and batteries was established. The power distribution model was operated through two control strategies using step control and fuzzy control, and each control strategy was evaluated through data derived from the simulation. As a result of evaluation through the behavior data of state of charge, fuel cell current and balance of plant, fuzzy control was evaluated as a proper strategy in terms of control stability and durability.

환경친화적자동차 연료소비율 시험방법에 대한 고찰 (Consideration of Fuel Economy Measurement Method for Environmentally Friendly Vehicles)

  • 임종순;권해붕;용기중;맹정열
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.243-246
    • /
    • 2009
  • Fuel consumption measurement of Environmentally Friendly Vehicles is considerably different form internal combustion engine vehicle such as Carbon balance method. A practical method of fuel Consumption measurement has been developed for Hydrogen fuel cell vehicles and Electricity Vehicles. The purpose of this research is to measure the fuel consumption of hydrogen fuel cell vehicles and Electricity Vehicles on chassis-dynamometer and to give information when the research is intended to develop method to measure Energy consumption.

  • PDF

DEVELOPMENT OF FUEL CELL HYBRID ELECTRIC VEHICLE PERFORMANCE SIMULATOR

  • Park, C.;Oh, K.;Kim, D.;Kim, H.
    • International Journal of Automotive Technology
    • /
    • 제5권4호
    • /
    • pp.287-295
    • /
    • 2004
  • A performance simulator for the fuel cell hybrid electric vehicle (FCHEV) is developed to evaluate the potentials of hybridization for fuel cell electric vehicle. Dynamic models of FCHEV's electric powertrain components such as fuel cell stack, battery, traction motor, DC/DC converter, etc. are obtained by modular approach using MATLAB SIMULINK. In addition, a thermodynamic model of the fuel cell is introduced using bondgraph to investigate the temperature effect on the vehicle performance. It is found from the simulation results that the hybridization of fuel cell electric vehicle (FCEV) provides better hydrogen fuel economy especially in the city driving owing to the braking energy recuperation and relatively high efficiency operation of the fuel cell. It is also found from the thermodynamic simulation of the FCEV that the fuel economy and acceleration performance are affected by the temperature due to the relatively low efficiency and reduced output power of the fuel cell stack at low temperature.

반밀폐공간에서 발생되는 차량용 수소연료탱크 폭발 실험 (An Experimental Study on the Explosion of Hydrogen Tank for Fuel-Cell Electric Vehicle in Semi-Closed Space)

  • 박진욱;유용호;김휘성
    • 자동차안전학회지
    • /
    • 제13권4호
    • /
    • pp.73-80
    • /
    • 2021
  • Recently, Korea has established a plan for the supply of hydrogen vehicles and is promoting the expansion of the supply. Risk factors for hydrogen vehicles are hydrogen leakage, jet fire, and explosion. Therefore Safety measures are necessary for this hazard. In addition, risks in semi-closed spaces such as tunnels, underground roads, and underground parking lots should be analyzed. In this study, an explosion experiment was conducted on a hydrogen tank used in a hydrogen vehicle to analyze the risk of a hydrogen vehicle explosion accident that may occur in a semi-closed space. As results, the effect on the structure and the human body was analyzed using the overpressure and impulse values for each distance generated during the explosion.

수소충전소 및 수소자동차의 사고 시나리오 개발 (Development of Accident Scenarios for Hydrogen Refueling Station and Fuel Cell Vehicle)

  • 박병직;김양균;임옥근
    • 자동차안전학회지
    • /
    • 제15권1호
    • /
    • pp.27-34
    • /
    • 2023
  • The registration rate of eco-friendly vehicles, such as hydrogen vehicles, is increasing rapidly, however, few first responders have experienced related accidents. Accident scenarios at hydrogen refueling stations and hydrogen vehicles on a road were investigated, and the relative importance of each scenario was analyzed using AHP analysis. Leakage, jet flame, and explosion that occurred inside and outside the hydrogen refueling station were reviewed, and the hydrogen gas explosion in the compartment showed the highest importance value. In case of the hydrogen vehicle, traffic accident statistics and actual accidents were used. It was analyzed that the hydrogen vessel explosion on the road due to the failure of TPRD and the leakage in the underground parking area were difficult to respond. The developed accident scenarios are expected to be used for first responder training.

연료전지차용 수소배출 배관 및 배관이음매 안전성 평가를 위한 기초 연구 (The Basic Study on the Leak Test Method of the Hydrogen Exhaust Pipe for a Fuel Cell Vehicle)

  • 서호철;박경석;서경두;용기중
    • 한국정밀공학회지
    • /
    • 제28권2호
    • /
    • pp.185-192
    • /
    • 2011
  • This study deals with a basic proposal to prove the safety for the exhausted fittings of the hydrogen fuel cell vehicle. First, this study was approached to numerical analysis solving to close the exact boundary condition (Axial, Bending, Lateral) and the second, this study produced the Lateral movement equipment for the vibration. For the numerical analysis, This study was considered with the exact solution of Lateral movement and the resonance effect for durability sample according to fitting positions. The second, This study was made for special equipment for displacement/gas leak and the frequency because the domestic samples were comparing with foreign fitting and foreign fitting for the hydrogen fuel cell vehicle. The result of this study was satisfied with domestic fittings for the basic reference but it need more test because of other situation for hydrogen fuel cell vehicle.

온도에 따른 고분자 전해질형 연료전지시스템의 출력 특성 연구 (A Study on Performance Characteristics of PEMFC with Thermal Variation)

  • 박세준;신영식;정성찬;최정식;차인수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 춘계학술대회 논문집 에너지변화시스템부문
    • /
    • pp.212-214
    • /
    • 2009
  • The polymer electrolyte membrane fuel cell(PEMFC) with the advantages of low-operating temperature, high current density, low cost and volume, fast start-up ability, and suitability for discontinuous operation becomes the most reasonable and attractive power system for transportation vehicle and micro-grid power plant in a household. 200W PEMFC(Polymer electrolyte membrane fuel cell) system applied to middle and small-scaled micro-grid power system was constructed by this study, then the electrical characteristics and diagnosis of the fuel cell were analyzed with thermal variation.

  • PDF

시뮬레이션 기반 연료전지/2차전지 하이브리드 미니버스의 설계 및 성능 평가 (Design and Performance Evaluation for a Fuel Cell/Battery Hybrid Mini-Bus Based on a Simulation)

  • 김민진;공낙원;이원용;김창수
    • 한국수소및신에너지학회논문집
    • /
    • 제18권1호
    • /
    • pp.60-66
    • /
    • 2007
  • In terms of the vehicle efficiency, a fuel cell hybrid system has advantages compared to a conventional internal combustion engine and a fuel cell alone-powered system. The efficiency of the fuel cell hybrid vehicle mainly depends on the maximum power of the fuel cell and therefore it is important to decide the design value of the fuel cell maximum power. In this paper, to estimate the performance of the fuel cell hybrid mini-bus in the design phase the simulator based on the models for the fuel cell stack, the electric battery, the fuel cell balance of plant, the controller, and the vehicle itself is proposed. Additionally, the hybrid mini-bus efficiencies with several different fuel cell powers are simulated for a city driving schedule and are compared on another. Consequently, the proposed simulation scheme is useful to determine the best design value of the fuel cell hybrid vehicles.

연료전지자동차의 고압수소저장시스템 신뢰성 평가 (The Evaluation of Reliability for the High pressure hydrogen Storage System of Fuel Cell Vehicle)

  • 장규진;최영민;안병기;임태원
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.71-74
    • /
    • 2007
  • We have concentrated on the performance improvement of each part for durability, safety and cost of high pressure storage system for fuel cell vehicle so far. But for the mass production of fuel cell vehicle, it is necessary to evaluate durability and safety in system module. We built the standard to evaluate vibration and collision safety of high pressure storage system for fuel cell vehicle, and could verify reliability of high pressure storage system.

  • PDF

캐스케이드 시스템 기반 수소 충전소를 이용한 대형 수소 연료 전지 차량 연속 충전 분석 (Analysis of Back-to-back Refueling for Heavy Duty Hydrogen Fuel Cell Vehicles Using Hydrogen Refueling Stations Based on Cascade System)

  • 심규석;박병흥
    • 한국수소및신에너지학회논문집
    • /
    • 제35권3호
    • /
    • pp.300-309
    • /
    • 2024
  • Hydrogen utilization in the transportation sector, which relies on fossil fuels, can significantly reduce greenhouse gas by using to hydrogen fuel cell vehicles, and its adoption depends performance of hydrogen refueling station. The present study developed a model to simulate the back-to-back filling process of heavy duty hydrogen fuel cell vehicles at hydrogen refueling stations using a cascade method. And its quantitatively evaluated hydrogen refueling station performance by simulating various mass flow rates and storage tank capacity combinations, analyzing vehicle state of charge (SOC) of vehicles. In the cascade refueling system, the capacity of the high-pressure storage tank was found to have the greatest impact on the reduction of filling time and improvement of efficiency.