• 제목/요약/키워드: hydrogen adsorption

검색결과 435건 처리시간 0.029초

Metal-Organic Framework의 수소 흡착 메커니즘의 이해 (Understanding the Mechanism of Hydrogen Adsorption into Metal Organic Frameworks)

  • 이태범;김대진;윤지혜;최상범;김자헌;최승훈
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 제17회 워크샵 및 추계학술대회
    • /
    • pp.634-637
    • /
    • 2005
  • Hydrogen adsorption mechanism onto the porous metal-organic frameworks (MOFs) has been studied by density functional theory calculation. The selected functionals for the predict ion of interact ion energies between hydrogen and potential adsorption sites of MOF was utilized after the evaluation with the various functionals for interaction energy of $H_2C_6H_6$ model system the adsorption energy of hydrogen molecule into MOF was investigated with the consideration of the favorable adsorption sites and the orientations. We also calculated the second favorable adsorption sites by geometry optimization using every combination of two first absorbed hydrogen molecules. Based on the calculation of first and second adsorption sites and energies, the hydrogen adsorption into MOF follows a cooperative mechanism in which the initial metal sites initiate the propagation of the hydrogen adsorption on the whole frameworks. In addition, it was found that the interaction strength between the simple benzene ring with hydrogen is significantly reinforced when the benzene ring has been incorporated into the framework of MOFs.

  • PDF

활성탄의 기공도와 수소홀착능 사이의 관계 (The Relationships between the Porosity of Activated Carbon and Hydrogen Adsorption Capacity)

  • 진향교
    • 한국수소및신에너지학회논문집
    • /
    • 제14권4호
    • /
    • pp.305-312
    • /
    • 2003
  • A study is presented of the adsorption capacity of a number of different activated carbons for hydrogen at 100 bar aad 298 K. The hydrogen adsorption isotherm was measured by isothermal gravimetric analysis, using a microbalance. The effect of activated carbon's porosity on hydrogen adsorption capacity is surveyed. It is concluded that hydrogen adsorption capacity of activated carbon is lineally increased according to the increase of specific surface area and total pore volume, It seems that microporosity is more contributive than mesoporosity. Most of the adsorbed quantity is due to physical adsorption and chemisorption is negligible, In this work, 0.79 wt.% of hydrogen adsorption capacity is reached.

Low Temperature Adsorption of Hydrogen on Nanoporous Materials

  • Jhung, Sung-Hwa;Yoon, Ji-Woong;Kim, Hye-Kyung;Chang, Jong-San
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권7호
    • /
    • pp.1075-1078
    • /
    • 2005
  • Hydrogen adsorption on various porous materials have been studied with a volumetric method at low temperature in the pressure of 0-760 torr. Their hydrogen uptakes depend at least partly on microporosity rather than total porosity. However, it is also necessary to consider other parameters such as pore size and pore architecture to explain the adsorption capacity. The heat of adsorption and adsorption-desorption-readsorption experiments show that the hydrogen adsorption over the porous materials are composed of physisorption with negligible contribution of chemisorption. Among the porous materials studied in this work, SAPO-34 has the highest adsorption capacity of 160 mL/g at 77 K and 1 atm probably due to high micropore surface area, micropore volume and narrow pore diameter.

Effect of hydrogen on adsorption of hydrocarbon fragments on graphene

  • Cho, Sangmo
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제3회(2014년)
    • /
    • pp.464-466
    • /
    • 2014
  • We investigate the effect of hydrogen on adsorption of hydrocarbon molecules on graphene with density functional theory (DFT) calculations. In this study, we calculate the binding energies of hydrogen molecule, carbon atom and other hydrocarbon fragments such as CHx (x=1, 2, 3, 4) on graphene to find the most stable adsorption site. Then, to study the effect of hydrogen, we investigate the adsorption of hydrocarbon fragments in the presence of hydrogen atoms on graphene.

  • PDF

부피법을 이용한 저온 등량 수소 흡착열 측정법 개선 (Improvement of Accuracy for Determination of Isosteric Heat of Hydrogen Adsorption)

  • 오현철
    • 한국재료학회지
    • /
    • 제27권3호
    • /
    • pp.127-131
    • /
    • 2017
  • Isosteric heat of hydrogen adsorption is one of the most important parameters required to describe solid-state hydrogen storage systems. Typically, it is calculated from adsorption isotherms measured at 77K (liquid N2) and 87K (liquid Ar). This simple calculation, however, results in a high degree of uncertainty due to the small temperature range. Therefore, the original Sievert type setup is upgraded using a heating and cooling device to regulate the wide sample temperature. This upgraded setup allows a wide temperature range for isotherms (77K ~ 117K) providing a minimized uncertainty (error) of measurement for adsorption enthalpy calculation and yielding reliable results. To this end, we measure the isosteric heats of hydrogen adsorption of two prototypical samples: activated carbon and metal-organic frameworks (e.g. MIL-53), and compared the small temperature range (77~87K) to the wide one (77K ~ 117K).

Pressure Swing Adsorption 기반 수소정제용기 3차원 모델링 및 타당성 검증 연구 (Pressure Swing Adsorption Based Hydrogen Purification Vessel 3D Modeling and Feasibility Study)

  • 차요한;최재유;주현철
    • 한국수소및신에너지학회논문집
    • /
    • 제32권4호
    • /
    • pp.197-204
    • /
    • 2021
  • Pressure swing adsorption is a purification process which can get pure hydrogen. The purification process is composed of four process: compression, adsorption, desorption and discharge. In this study the adsorption process was simulated by using the Fluent and validated with experimental results. A gas used in experiment is composed of H2, CO2, CH4, and CO. Adsorption process conducted under 313 kelvin and 3 bar and bituminous-coal-based (BPL) activated carbon was used as the adsorbent. Langmuir model was applied to explain the gas adsorption. And diffusion of all the gases was controlled by micro-pore resistances. The result shows that, the most adsorbed gas was carbon dioxide, followed by methane and carbon monoxide. And carbon monoxide took the least amount of time to reach the maximum adsorption amount. The molar fraction of the off-gas became the same as the molar fraction of the gas supplied from the inlet after adsorption reached the equilibrium.

수산화철계 흡착제의 황화수소 흡착 특성 (Adsorption Characteristics of Hydrogen Sulfide on Iron Hydroxide-based Adsorbent)

  • 류승형;서영주;박준우;김신동;박성순
    • 한국폐기물자원순환학회지
    • /
    • 제34권5호
    • /
    • pp.468-473
    • /
    • 2017
  • This study was carried out to examine the characteristics of hydrogen sulfide adsorption using an iron hydroxide-based adsorbent. The prepared adsorbent was discussed with regard to its adsorption capacity and analyzed via surface analysis methods to illustrate the physical characteristics of hydrogen sulfide adsorption. As the drying temperature increased, the adsorption capacity of the adsorbent decreased from 29.15wt% to 22.73wt%. The adsorption capacity was decreased as the space velocity increased and showed an adsorption capacity of about 3.65 at $3,157.6h^{-1}$. The effect of sulfur dioxide was to decrease the adsorption capacity from 29.15wt% to 27.94wt%. The adsorbent exhibited the amorphous type in its physical appearance based on XRD and EDS analysis.

개질 수소 정제용 PSA 공정을 위한 CO 흡착제의 성능 평가 (The Evaluation of CO Adsorbents Used in PSA Process for the Purification of Reformed Hydrogen)

  • 박진남
    • 한국수소및신에너지학회논문집
    • /
    • 제27권6호
    • /
    • pp.628-635
    • /
    • 2016
  • Natural gas reformed hydrogen is used as a fuel of fuel cell vehicle, PSA process is used for the purification of reformed hydrogen. In this study, the performance of CO adsorbent in PSA process was evaluated. Zeolite adsorbents used in the commercial PSA process is used. The physical and chemical properties of adsorbents were characterized using BET apparatus, XRD, and FE-SEM. The breakthrough apparatus modified from GC was used for the CO breakthrough experiment, the quantitative analysis of CO adsorption capacity was performed using CO breakthrough curve. Zeolite 10X and 13X showed superior CO adsorption capacity than activated alumina. The CO adsorption capacity of zeolite 10X is more than twice of zeolite 13X even the BET surface area is low. It seems that the presence of $Ca^{2+}$ cation in zeolite 10X is beneficial to the adsorption of CO.

수소추출기의 부분부하 운전을 위한 PSA 제어전략에 대한 연구 (A Study on PSA Controll Strategy for Part Load Operation of a Hydrogen Generator)

  • 이상호;김선엽;최영
    • 한국수소및신에너지학회논문집
    • /
    • 제33권6호
    • /
    • pp.819-826
    • /
    • 2022
  • Fuel cell systems are being supplied to households and buildings to reduce greenhouse gases. The fuel cell systems have problems of high cost and slow startup due to fuel processors. Greenhouse gas reduction of the fuel cell systems is also limited by using natural gas. The problems can be solved by using a hydrogen generator consisting of a reformer and pressure swing adsorption (PSA). However, part load operation of the hydrogen generator is required depending on the hydrogen consumption. In this paper, PSA operation strategies are investigated for part load of the hydrogen generator. Adsorption and purge time were changed in the range of part load ratio between from 0.5 to 1.0. As adsorption time increased, hydrogen recovery increased from 29.09% to 48.34% at 0.5 of part load ratio. Hydrogen recovery and hydrogen purity were also improved by increasing adsorption and purge time. However, hydrogen recovery dramatically decreased to 35.01% at 0.5 of part load ratio.

Strain Dependence of Adsorption Energy of Single Layer MoS2: Possibility of Catalytic Usage

  • 전부경;이창희
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제5회(2016년)
    • /
    • pp.355-356
    • /
    • 2016
  • It is shown that the maximum value of exchange current is obtained where hydrogen adsorption energy is near 0. This enables to estimate catalytic efficiency of a material with hydrogen adsorption energy, which is relatively easier to calculate with density fuctional theory (DFT) method. Strain dependence of the adsorption energy was studied with DFT method and adsorption energy of 0.04 eV per hydrogen atom is obtained at 30% strain.

  • PDF