The Relationships between the Porosity of Activated Carbon and Hydrogen Adsorption Capacity

활성탄의 기공도와 수소홀착능 사이의 관계

  • JIN, Hangkyo (Applied Chemistry & Engineering Division, Korea Research Institute of Chemical Technology)
  • 진향교 (한국화학연구원 응용화학연구부 미세공정기술연구센터)
  • Published : 2003.12.30

Abstract

A study is presented of the adsorption capacity of a number of different activated carbons for hydrogen at 100 bar aad 298 K. The hydrogen adsorption isotherm was measured by isothermal gravimetric analysis, using a microbalance. The effect of activated carbon's porosity on hydrogen adsorption capacity is surveyed. It is concluded that hydrogen adsorption capacity of activated carbon is lineally increased according to the increase of specific surface area and total pore volume, It seems that microporosity is more contributive than mesoporosity. Most of the adsorbed quantity is due to physical adsorption and chemisorption is negligible, In this work, 0.79 wt.% of hydrogen adsorption capacity is reached.

Keywords

Acknowledgement

Supported by : 과학기술부

References

  1. R. Strobel, L. Jorissen, T. Schliermann, V. Trapp, W. Schutz, K. Bohmhammel, G. Wolf, and J. Garche, 'Hydrogen adsorption on carbon materials', J. of Power Soureces, Vol. 84, 1999, pp. 221-223 https://doi.org/10.1016/S0378-7753(99)00320-1
  2. F. Darkrim, D. Levesque, 'High Adsorptive Properties of Opened Carbon Nanotubes at 77 K', J. Power Soureces Vol. 84, 1999, pp. 21-224
  3. A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune, and M. J. Heben, 'Storage of hydrogen in single- walled carbon nanotubes', Nature, Vol. 386, 1997, pp. 377-379 https://doi.org/10.1038/386377a0
  4. Ralph T. Yang, 'Hydrogen storage by alkali-doped carbon nanotubes-revisited', Carbon, Vol. 38, 2000, pp. 623-626 https://doi.org/10.1016/S0008-6223(99)00273-0
  5. B. C. Lippens and J. H. de Boer, J. Catalysis, Vol. 4, 1965, p. 319-323 https://doi.org/10.1016/0021-9517(65)90307-6
  6. L. Gurvitch, J. Phys. Chem. Soc. Russ. Vol. 47, 1915, p. 805
  7. 진항교, 정순용 : '활성탄의 수소흡착특성', 응용화학, Vol. 6, No. 1, 2002, pp. 143-146
  8. M. G. Nijikamp, J. E. M. J. Raaymakers, A. J. van Dillen, and K. P. de Jong, 'Hydrogen storage using physisorption-materials demands', Appl. Phys., A 72, 2001, pp. 619-623 https://doi.org/10.1007/s003390100847
  9. L. Zhou, Y. Zhou, Y. Sun, 'A comparative study of hydrogen adsorption on superactivated carbon versus carbon nanotubes', Int. J. of hydrogen Energy (in press)
  10. R. Chahine and P. Benard, 'Assessment of hydrogen Storage on Different Carbons', IEA Task 12: Metal Hydrides and Carbon for Hydrogen Storage 2001
  11. C. Pierce, J. W. Wiely, and R. N. Smith, J. Phys. Chem., Vol. 53, 1952, p.733
  12. M. M. Dubinin and E. D. Zaverina, Zhur. Fiz. Khim. Vol. 23, 1949, p. 1129