DOI QR코드

DOI QR Code

Low Temperature Adsorption of Hydrogen on Nanoporous Materials

  • Jhung, Sung-Hwa (Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology) ;
  • Yoon, Ji-Woong (Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology) ;
  • Kim, Hye-Kyung (Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology) ;
  • Chang, Jong-San (Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology)
  • Published : 2005.07.20

Abstract

Hydrogen adsorption on various porous materials have been studied with a volumetric method at low temperature in the pressure of 0-760 torr. Their hydrogen uptakes depend at least partly on microporosity rather than total porosity. However, it is also necessary to consider other parameters such as pore size and pore architecture to explain the adsorption capacity. The heat of adsorption and adsorption-desorption-readsorption experiments show that the hydrogen adsorption over the porous materials are composed of physisorption with negligible contribution of chemisorption. Among the porous materials studied in this work, SAPO-34 has the highest adsorption capacity of 160 mL/g at 77 K and 1 atm probably due to high micropore surface area, micropore volume and narrow pore diameter.

Keywords

References

  1. Schlapbach, L.; Züttel, A. Nature 2001, 414, 353 https://doi.org/10.1038/35104634
  2. Seayad, A. M.; Antonelli, D. M. Adv. Mater. 2004, 16, 765 https://doi.org/10.1002/adma.200306557
  3. Zuttel, A. Mater. Today 2003, 6, 24
  4. Nijkamp, M. G.; Raaymakers, J. E. M. J.; van Dillen, A. J.; de Jong, K. P. Appl. Phys. A 2001, 72, 619 https://doi.org/10.1007/s003390100847
  5. Weitkamp, J.; Fritz, M.; Ernst, S. Int. J. Hydrogen Energy 1995, 20, 967 https://doi.org/10.1016/0360-3199(95)00058-L
  6. Langmi, H. W.; Walton, A.; Al-Mamouri, M. M.; Johnson, S. R.; Book, D.; Speight, J. D.; Edwards, P. P.; Gameson, I.; Anderson, P. A.; Harris, I. R. J. Alloy Compd. 2003, 356, 710 https://doi.org/10.1016/S0925-8388(03)00368-2
  7. Kazansky, V. B.; Borovkov, V. Yu.; Serich, A.; Karge, H. G. Micropor. Mesopor. Mater. 1998, 22, 251 https://doi.org/10.1016/S1387-1811(98)00084-5
  8. Forster, P. M.; Eckert, J.; Chang, J.-S.; Park, S.-E.; Férey, G.; Cheetham, A. K., J. Am. Chem. Soc. 2003, 125, 1309 https://doi.org/10.1021/ja028341v
  9. Kitagawa, S.; Kitaura, R.; Noro, S.-I. Angew. Chem. Intl. Ed. 2004, 43, 2334 https://doi.org/10.1002/anie.200300610
  10. Rosi, N. L.; Eckert, J.; Eddaoudi, M.; Vodak, D. T.; Kim, J.; O'Keeffe, M.; Yaghi, O. M. Science 2003, 300, 1127 https://doi.org/10.1126/science.1083440
  11. Zhao, X.; Xiao, B.; Fletche, A. J.; Thomas, K. M.; Bradshaw, D.; Rosseinsky, J. Science 2004, 306, 1012 https://doi.org/10.1126/science.1101982
  12. Lee, E. Y.; Suh, M. P. Angew. Chem. Intl. Ed. 2004, 43, 2798 https://doi.org/10.1002/anie.200353494
  13. Dybtsev, D. N.; Chun, H.; Kim, K. Angew. Chem. Intl. Ed. 2004, 43, 5033 https://doi.org/10.1002/anie.200460712
  14. Ferey, G.; Latroche, M.; Serre, C.; Millange, F.; Loiseau, T.; Percherson-Guégan, A. Chem. Commun. 2003, 2976
  15. Pan, L.; Sander, M. B.; Huang, X.; Li, J.; Smith, M.; Bittner, E.; Bockrath, B.; Johnson, J. K. J. Am. Chem. Soc. 2004, 126, 1308 https://doi.org/10.1021/ja0392871
  16. Darkrim, F. L.; Malbrunot, P.; Tartaglia, G. P. Int. J. Hydrogen Energy 2002, 27, 193 https://doi.org/10.1016/S0360-3199(01)00103-3
  17. Dillon, A. C.; Heben, M. J. Appl. Phys. A 2001, 72, 133 https://doi.org/10.1007/s003390100788
  18. Rowsell, J. L. C.; Millward, A. R.; Park, K. S.; Yaghi, O. M. J. Am. Chem. Soc. 2004, 126, 5666 https://doi.org/10.1021/ja049408c
  19. Wilson, S. T.; Lok, B. M.; Messina, C. A.; Cannan, T. R.; Flanigen, E. M. J. Am. Chem. Soc. 1982, 104, 1146 https://doi.org/10.1021/ja00368a062
  20. Jhung, S. H.; Chang, J.-S.; Hwang, Y. K.; Park, S.-E. J. Mater. Chem. 2004, 14, 280 https://doi.org/10.1039/b309142b
  21. Yoon, J. W.; Jhung, S. H.; Kim, Y. H.; Park, S.-E.; Chang, J.-S. Bull. Korean Chem. Soc. 2005, 26, 558 https://doi.org/10.5012/bkcs.2005.26.4.558
  22. Jhung, S. H.; Lee, J.-H.; Yoon, J. W.; Hwang, J.-S.; Park, S.-E.; Chang, J.-S. Micropor. Mesopor. Mater. 2005, 80, 147 https://doi.org/10.1016/j.micromeso.2004.11.013
  23. Li, H.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O. M. Nature 1999, 402, 276 https://doi.org/10.1038/46248
  24. Serre, C.; Millange, F.; Thouvenot, C.; Nogues, M.; Marsolier, G.; Louër, D.; Ferey, G. J. Am. Chem. Soc. 2002, 124, 13519 https://doi.org/10.1021/ja0276974
  25. Guillou, N.; Livage, C.; Drillon, M.; Férey, G. Angew. Chem. Intl. Ed. 2003, 42, 5314 https://doi.org/10.1002/anie.200352520
  26. Ferey, G.; Serre, C.; Mellot-Draznieks, C.; Millange, F.; Surble, S.; Dutour, J.; Margiolaki, I. Angew. Chem. Intl. Ed. 2004, 43, 6296 https://doi.org/10.1002/anie.200460592
  27. Dybtsev, D. N.; Chun, H.; Yoon, S. H.; Kim, D.; Kim, K. J. Am. Chem. Soc. 2004, 126, 32 https://doi.org/10.1021/ja038678c
  28. Thomas, J. M.; Thomas, W. J. Introduction to the Principles of Heterogeneous Catalysis; Academic Press: New York, 1967; p 102
  29. Makarova, M. A.; Zholobenko, V. L.; Al-Ghefaili, K. M.; Thompson, N. E.; Dewing, J.; Dwyer, J. J. Chem. Soc. Faraday Trans. 1994, 90, 1047 https://doi.org/10.1039/ft9949001047
  30. Jhung, S. H. et al., unpublished results
  31. Arean, C. O.; Manoilova, O. V.; Bonelli, B.; Delgado, M. R.; Palomino, G. T.; Garrone, E. Chem. Phys. Lett. 2003, 370, 631 https://doi.org/10.1016/S0009-2614(03)00172-6

Cited by

  1. Mn(II)-Based Porous Metal–Organic Framework Showing Metamagnetic Properties and High Hydrogen Adsorption at Low Pressure vol.51, pp.1, 2012, https://doi.org/10.1021/ic2021929
  2. Synthesis of Ni/Graphene Nanosheets via Electron Beam Irradiation and Their Enhanced Electrochemical Hydrogen Storage Properties vol.36, pp.11, 2015, https://doi.org/10.1002/bkcs.10530
  3. Porous Cobalt(II)–Organic Frameworks with Corrugated Walls: Structurally Robust Gas-Sorption Materials vol.119, pp.1-2, 2007, https://doi.org/10.1002/ange.200601627
  4. Porous Cobalt(II)–Organic Frameworks with Corrugated Walls: Structurally Robust Gas-Sorption Materials vol.46, pp.1-2, 2007, https://doi.org/10.1002/anie.200601627
  5. The potential of organic polymer-based hydrogen storage materials vol.9, pp.15, 2007, https://doi.org/10.1039/b618053a
  6. Low-Temperature Adsorption/Storage of Hydrogen on FAU, MFI, and MOR Zeolites with Various Si/Al Ratios: Effect of Electrostatic Fields and Pore Structures vol.13, pp.22, 2007, https://doi.org/10.1002/chem.200700148
  7. Novel Phosphotungstate-titania Nanocomposites from Aqueous Media vol.28, pp.7, 2005, https://doi.org/10.5012/bkcs.2007.28.7.1097
  8. A biporous coordination framework with high H2 storage density vol.2008, pp.3, 2005, https://doi.org/10.1039/b712201b
  9. Hydrogen Storage in Mesoporous Metal Oxides with Catalyst and External Electric Field vol.114, pp.15, 2010, https://doi.org/10.1021/jp910506g
  10. Knobby surfaced, mesoporous, single-phase GIS-NaP1 zeolite microsphere synthesis and characterization for H2 gas adsorption vol.1, pp.7, 2005, https://doi.org/10.1039/c2ta01311h