• 제목/요약/키워드: hydrocarbon degradation

검색결과 124건 처리시간 0.048초

혼합 균주의 유류 분해 특성에 관한 호흡율 연구

  • 목지예;류두현;유병수;유지선;박준석;안병구
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2002년도 총회 및 춘계학술발표회
    • /
    • pp.323-326
    • /
    • 2002
  • Oxygen uptake characteristics of soil microcosm added by hydrocarbon degrading bacteria screened from polluted site in Korea was studied. The degradation of TPH was enhanced by additon of nononionic surfactants. The amount of oxygen consumed was decreased at higher concentration. The degradation rate of hydrocarbon was decreased by increasing the hydrcarbon concentration.

  • PDF

Pseudomonas aeruginosa F722부터 유래된 biosurfactant를 이용한 등.경유 혼합물의 생분해율 향상 (Biodegradation Enhancement of The Mixture of Kerosene and Diesel by using Biosurfactant from Pseudomonas aeruginosa F722)

  • 오경택;박귀환;강창민;;정선용
    • KSBB Journal
    • /
    • 제18권6호
    • /
    • pp.529-535
    • /
    • 2003
  • 본 연구에서는 등$.$경유 혼합물을 Pseudomonas aeruginosa F722를 이용하여 분해시킬 때 생분해율에 미치는 생물계면활성제, 화학계면활성제 및 공기 공급량의 영향을 조사하였다. 그 결과, 탄화수소 분해율은 0.01%와 0.15% 농도의 생물계면활제를 첨가하였을 때가 0.05%, 0.1% 및 0.2%농도의 생물계면활제를 첨가하였을 때보다 최고 6.2% 높은 94.3, 94.2% 제거율을 나타냈다. 하지만, 0.15% 생물계면활제를 첨가하였을 때가 0.01% 생물계면활제를 첨가하였을 때보다 탄화수소 분해율이 더 안정적이었다. 그리고 생물계면활성제 (surface tension; 30mN/m)와 화학계면활성제 (Tween 80;39mN/m, detergent;31mN/m)를 0.15% 농도로 첨가하여 배양하였을때, 탄화수소 분해율은 94.2, 93.5, 93.4%로 비슷하였다. 하지만, P. aeruginosa F722의 개체수는 생물계면활성제를 첨가했을 때가 화학계면활성제를 첨가했을 때보다 2배 이상 증가된 19 ${\times}$ $10^{7}$ cfu/$m\ell$로 조사되었다. 0.5vvm으로 공기를 공급하면서 교반을 수행하였을 때, 배양 3일 후, 사용균주를 접종하지 않은 공시험에서 탄화수소 분해율은 68.8%였으며, P. aeruginosa F722를 접종하였을 때는 94.8%이었다. 0.5 vvm으로 공기를 공급하였을 때가 공기를 공급하지 않았을 때보다 배양시간이 1/3로 단축되었다. 그리고 교반배양 (3일)과 정치배양 (10일)에서 탄화수소 분해율은 각각 94.8, 93.7%였다.

유류분해 미생물의 특성 및 제제화 가능성 평가

  • 윤정기;김태승;노회정;김혁;박종겸;고성환
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2004년도 총회 및 춘계학술발표회
    • /
    • pp.297-300
    • /
    • 2004
  • The various microbial tests were performed to determine bioremediation agent capacity for eight strains isolated from the oil contaminated regions. Two tests for isolated strains were conducted such as cell hydrophobicity and emulsifying activity. The biodegradation of SHM (saturated hydrocarbon mixture) and AHM (aromatic hydrocarbon mixture) with the strains also was carried out. The strains having higher cell hydrophobicity and emulsifying activity degraded petroleum oil effectively. The degradation capacity for SHM was represented more than 90% in YS-7 and WLH-1 of isolated strains, and KH3-2 were capable of degrading AHM. Especially, WLH-1 as yeast was shown more than two or three times in the degradation capacity of automobile engine lubricants and the biomonitoring results of contaminated soil for residual oil degrading test showed that the hydrocarbon biodegradation was increased in the second treatment by this strain.

  • PDF

고정화 Phanerochaete chrysosporium을 이용한 다환 방향족 화합물의 분해 (Biodegradation of PAHs (Polycyclic Aromatic Hydrocarbon) Using Immobilized Cells of Phanerochaete chrysosporium)

  • 서윤수;류원률;김창준;장용근;조무환
    • KSBB Journal
    • /
    • 제15권3호
    • /
    • pp.247-253
    • /
    • 2000
  • This study was aimed to enhance polycyclic aromatic hydrocarbon(PAHS) biodegradation rate by repeated-batch treatment using immobilized cells of Phanerochaete chrysosporium. In the repeated-batch operations with 30 mg/L of pyrene the maximum degradation rate was 6.58 mg/L day. As the number of batches increased the concentration of immobilized cells significantly decreased and the degradation rate and specific acitivity gradually increased to a maximum value and then decreased. To have PAH degradation activity and cell mass recovered one batch of cultivation using the growth medium instead of the PAH-degrading medium was carried in the course of repeated-batch operations. This maximum degradation rates of pyrene and anthracene were 4.29 and 4.46 mg/L$.$day respectively. Overall the rate of PAH degradation could be enhanced 2.5-30 folds by using immobilized cells compared to the case of using suspended cells.

  • PDF

탄화수소 냉매의 수평 원관내 응축열전달 특성 (Condensing heat transfer characteristics of hydrocarbon refrigerants in a horizontal tube)

  • 장영수;김민수;노승탁
    • 대한기계학회논문집B
    • /
    • 제21권12호
    • /
    • pp.1656-1667
    • /
    • 1997
  • Condensing heat transfer characteristics of hydrocarbon refrigerants are experimentally investigated. Single component hydrocarbon refrigerants (propane, isobutane, butane and propylene) and binary mixtures of propane/isobutane and propane/butane are considered as test fluids. Local condensing heat transfer coefficients of selected refrigerants are obtained from overall conductance measurement. Average heat transfer coefficients at different mass fluxes and heat transfer rates are shown and compared with those of R22. Pure hydrocarbon refrigerants have higher values of heat transfer coefficient than R22. It is also found that there is a heat transfer degradation for hydrocarbon mixtures due to composition variation during condensation. Measured condensing heat transfer coefficients are compared with predicted values by available correlations. An empirical correlation for pure and mixed hydrocarbon is developed, and it shows good agreement with experimental data.

Aryl Sulfonamides Induce Degradation of Aryl Hydrocarbon Receptor Nuclear Translocator through CRL4DCAF15 E3 Ligase

  • Kim, Sung Ah;Jo, Seung-Hyun;Cho, Jin Hwa;Yu, Min Yeong;Shin, Ho-Chul;Kim, Jung-Ae;Park, Sung Goo;Park, Byoung Chul;Kim, Sunhong;Kim, Jeong-Hoon
    • Molecules and Cells
    • /
    • 제43권11호
    • /
    • pp.935-944
    • /
    • 2020
  • Aryl hydrocarbon receptor nuclear translocator (ARNT) plays an essential role in maintaining cellular homeostasis in response to environmental stress. Under conditions of hypoxia or xenobiotic exposure, ARNT regulates the subset of genes involved in adaptive responses, by forming heterodimers with hypoxia-inducible transcription factors (HIF1α and HIF2α) or aryl hydrocarbon receptor (AhR). Here, we have shown that ARNT interacts with DDB1 and CUL4-associated factor 15 (DCAF15), and the aryl sulfonamides, indisulam and E7820, induce its proteasomal degradation through Cullin-RING finger ligase 4 containing DCAF15 (CRL4DCAF15) E3 ligase. Moreover, the two known neo-substrates of aryl sulfonamide, RNA-binding motif protein 39 (RBM39) and RNA-binding motif protein 23 (RBM23), are not required for ARNT degradation. In line with this finding, aryl sulfonamides inhibited the transcriptional activities of HIFs and AhR associated with ARNT. Our results collectively support novel regulatory roles of aryl sulfonamides in both hypoxic and xenobiotic responses.

Microbial Community Structure in Hexadecane- and Naphthalene-Enriched Gas Station Soil

  • Baek, Kyung-Hwa;Kim, Hee-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권7호
    • /
    • pp.651-657
    • /
    • 2009
  • Shifts in the activity and diversity of microbes involved in aliphatic and aromatic hydrocarbon degradation in contaminated soil were investigated. Subsurface soil was collected from a gas station that had been abandoned since 1995 owing to ground subsidence. The total petroleum hydrocarbon content of the sample was approximately 2,100 mg/kg, and that of the soil below a gas pump was over 23,000 mg/kg. Enrichment cultures were grown in mineral medium that contained hexadecane (H) or naphthalene (N) at a concentration of 200 mg/l. In the Henrichment culture, a real-time PCR assay revealed that the 16S rRNA gene copy number increased from $1.2{\times}10^5$to $8.6{\times}10^6$with no lag phase, representing an approximately 70-fold increase. In the N-enrichment culture, the 16S rRNA copy number increased about 13-fold after 48 h, from $6.3{\times}10^4$to $8.3{\times}10^5$. Microbial communities in the enrichment cultures were studied by denaturing gradient gel electrophoresis and by analysis of 16S rRNA gene libraries. Before the addition of hydrocarbons, the gas station soil contained primarily Alpha- and Gammaproteobacteria. During growth in the H-enrichment culture, the contribution of Bacteriodetes to the microbial community increased significantly. On the other hand, during N-enrichment, the Betaproteobacteria population increased conspicuously. These results suggest that specific phylotypes of bacteria were associated with the degradation of each hydrocarbon.

유류오염토양의 생물적용기술 적용타당성 검토 (Treatability Study on Oil-Contaminated Soils for Bioremediation Application)

  • 이연희;설미진;오영숙
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2001년도 추계학술발표대회
    • /
    • pp.578-581
    • /
    • 2001
  • A treatability study was conducted using a hydrocarbon-contaminated soil for the oPtimization of bioremediation strategy best fit to a given set of contamination. The applicability of nutrients, biosurfactant, and oil-degrading microorganisms were examined by monitoring $CO_2$ evolution and oil degradation The addition of inorganic nutrients in the form of slow released fertilizer accelerated the initial rate of $CO_2$ evolution by a factor of 3. The application of oil-degrading microorganisms did not significantly increased $CO_2$ evolution or biodegradation efficiency. Application of a commercial biosurfactant was most effect in terms of the total $CO_2$ evolution and the oil degradation rate. The results indicate that $CO_2$ evolution measurement was found to be a simple and reliable countermeasure of crude oil hydrocarbon mineralization for the rapid determination of the best-fit bioremediation strategy.

  • PDF