• 제목/요약/키워드: hydraulic volume

검색결과 434건 처리시간 0.029초

Numerical Analysis of Evolution of Thermal Stratification in a Curved Piping System

  • Park, Seok-Ki;Nam, Ho-Yun;Jo, Jong-Chull
    • Nuclear Engineering and Technology
    • /
    • 제32권2호
    • /
    • pp.169-179
    • /
    • 2000
  • A detailed numerical analysis of the evolution of thermal stratification in a curved piping system in a nuclear power plant is performed. A finite volume based thermal-hydraulic computer code has been developed employing a body-fitted, non-orthogonal curvilinear coordinate for this purpose. The cell-centered, non-staggered grid arrangement is adopted and the resulting checkerboard pressure oscillation is prevented by the application of momentum interpolation method. The SIMPLE algorithm is employed for the pressure and velocity coupling, and the convection terms are approximated by a higher-order bounded scheme. The thermal-hydraulic computer code developed in the present study has been applied to the analysis of thermal stratification in a curved duct and some of the predicted results are compared with the available experimental data. It is shown that the predicted results agree fairly well with the experimental measurements and the transient formation of thermal stratification in a curved duct is also well predicted.

  • PDF

웨스팅하우스형 원자력발전소 가압기 방출 탱크의 실시간 시뮬레이션을 위한 전문모델 개발 (Development of a Dedicated Model for a Real-Time Simulation of the Pressurizer Relief Tank of the Westinghouse Type Nuclear Power Plant)

  • 서재승;전규동
    • 한국시뮬레이션학회논문지
    • /
    • 제13권2호
    • /
    • pp.13-21
    • /
    • 2004
  • The thermal-hydraulic model ARTS which was based on the RETRAN-3D code adopted in the domestic full-scope power plant simulator which was provided in 1998 by KEPRI. Since ARTS is a generalized code to model the components with control volumes, the smaller time-step size should be used even if converged solution could not get in a single volume. Therefore, dedicated models which do not force to reduce the time-step size are sometimes more suitable in terms of a real-time calculation and robustness. In the case of PRT(Pressurizer Relief Tank) model, it is consist of subcooled water in bottom and non-condensable gas in top. The sparger merged under subcooled water enhances condensation. The complicated thermal-hydraulic phenomena such as condensation, phase separation with existence of non-condensable gas makes difficult to simulate. Therefore, the PRT volume can limit the time-step size if we model it with a general control volume. To prevent the time-step size reduction due to convergence failure for simulating this component, we developed a dedicated model for PRT. The dedicated model was expected to provide substantially more accurate predictions in the analysis of the system transients. The results were resonable in terms of accuracy, real-time simulation, robustness and education of operators, complying with the ANSI/ANS-3.5-1998 simulator software performance criteria and RETRAN-3D results.

  • PDF

제올라이트 칼럼에 의한 인공생활하수의 COD 및 BOD 제거에 관한 연구 (COD and BOD Removal of Artificial Municipal Wastewater by a Column filled with Zeolite)

  • 서정윤
    • 한국습지학회지
    • /
    • 제3권1호
    • /
    • pp.75-89
    • /
    • 2001
  • Constructed wetlands were typically cost less to build and operate, and require less energy than standard mechanical treatment technology but they have similar performance to centralized wastewater treatment plants. Therefore, they were constructed especially many in rural areas, where are small villages but not industries. Accordingly, plantless column tests were performed to investigate the possibility on using zeolite as a filter medium of constructed wetland for the wastewater treatment. $COD_{cr}$ removal efficiency was 94.63% at hydraulic load $314L/m^2{\cdot}d$ and filtering hight 100cm filled with a zeolite mixture. This zeolite mixture consisted of 1 : 1 by volume of a zeolite in the diameter range of 0.5 to 1mm to a zeolite in the diameter range of 1 to 3mm. According, hydraulic load $314L/m^2{\cdot}d$ was considered as optimal. Three zeolite mixture were used to determine the optimal mixing ratio by volume of a zeolite(A) in the diameter range of 0.5 to 1mm to a zeolite(B) in the diameter range of 1 to 3mm diameter. 1 : 3, 1 : 1 and only B in A to B by volume were tested at hydraulic load $314L/m^2{\cdot}d$ and filtering hight 100cm. $COD_{cr}$ removal efficiency was more than 89% at mixing ratios of 1 : 3 and 1 : 1 in A to B. Removal efficiency was lower at the column filled with only B. Removal efficiency was better at filter medium filled with mixing ratio 1 : 1 in A to B than with the other mixing ratios. Thus, it was found that the mixture of mixing ratio 1 : 1 in A to B was appropriate for filter medium of constructed wetland. Removal efficiency was higher in down-flow than in up-flow, and $COD_{cr}$ and BOD were removed best in 20cm filter height near feeding area.

  • PDF

유압펌프 및 모터 피스톤 조립체의 수명예측을 위한 가속실험 모델 (Accelerated Life Test Model for Life Prediction of Piston Assemblies in Hydraulic Pump and Motor)

  • 이용범;김형의;유영철;박종호
    • 유공압시스템학회논문집
    • /
    • 제2권4호
    • /
    • pp.14-22
    • /
    • 2005
  • The safety factor of hydraulic piston pumps & motors due to high pressurization, high speedization and low weight/volume realization to enhance the output density shows a tendency to decrease. Therefore more effective test methods are necessary to predict the exact life. The failure of hydraulic pumps & motors operating in high pressure and high speed mainly occurs in piston-shoe assemblies, and the major failure mode is wearout of the shoe surface. The sensitive parameters in the endurance life test are speed, pressure and temperature, and the failure production increases in proportion to the operating time. In this research, the authors propose the combined accelerated life test model using the analysis method of the combined accelerated life test results of piston-shoe assemblies by applying simultaneously high speed, high pressure and high temperature in accordance with variation of speed, pressure and temperature to reduce the life test time.

  • PDF

가청화를 이용한 댐 수차 발전기소음의 저감효과 평가 (Evaluation on Reduction Effect of Dam Hydraulic Turbine Dynamo Noise using Auralization)

  • 정은정;정철운;김재수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.253-257
    • /
    • 2007
  • In case of the hydraulic turbine dynamo room at Dam, due to its big volume and reflexible finishing material, since the noise of electricity-generation is amplifying, it influences the difficulty of mutual communication among the workers, also it is causing both mental and physical damages to those workers in the neighboring office. Accordingly, after presentation of the optimized renovation model of the hydraulic turbine dynamo room using the acoustic simulation, this Research has compared and evaluated them using the auralizational technique between the present condition of "before improvement" and the acoustic condition of "after improvement". As the result of psycho-acoustics experiment, as the acoustic conditions at both "before & after Improvement" were apparently compared, it appeared that there is a considerable amount of noise-reduction effect at psycho-acoustics. It is considered that such material could be utilized as the valuable data hereafter for the time when any construction and renovation of the hydraulic turbine dynamo room and other similar workshop.

  • PDF

지열에너지 시스템을 적용한 발전용 수차의 유동과 전력 특성 (Flow and Electricity Power Characteristics of Hydraulic Turbine for Power Generation with Geothermal Energy System)

  • 서충길;원종운
    • 동력기계공학회지
    • /
    • 제19권1호
    • /
    • pp.24-30
    • /
    • 2015
  • Geothermal energy is used in various types, such as power generation, direct use, and geothermal heat pumps. Geothermal energy with high temperature have been used for power generation for more than a century. The purpose of the study is to investigate flow and electricity power characteristics of hydraulic turbine for power generation of geothermal heat pump type with closed-system. The differences between the four types of hydraulic turbine, are different from the blade shape, volume, angle and etc. In case of prototype(1), pressure at blade was reduced to 2.1 bar, the kinetic energy of blade increased by increasing flow velocity(4.1 m/s). The increase of flow velocity at the blade edge markedly appeared, to increase the kinetic energy of the rotating shaft. In case that gateway in hydraulic turbine was installed, operating torque and RPM(1,080) of the rotating shaft increased respectively. Although rotational speed of prototype(2) compared to prototype(1) was reduced, the power generation capacity was greater about 3.4 times to 97 W. The most power of 255W was generated from prototype (4).

전자유압식 초고압 연료분사계의 시뮬레이션에 관한 연구 (Computer Simulation of the Electronic Hydraulic Ultra - High Pressure Fuel Injection System)

  • 장세호;안수길
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제20권5호
    • /
    • pp.82-92
    • /
    • 1996
  • A computer simulation with predict the fuel injection rates and the fuel injection pressure behaviors in diesel engine fuel injection systems would by very useful in designing or improving fuel injection systems. In this paper we developed computer program in order to predict the behaviors of the fuel injection rate and the injection pressure for Electronic Hydraulic Ultra-High Pressure Fuel Injection System. We've applied the continuity and momentum equations for the hydraulic phenomena and the dynamics of individual components of the Electronic Hydraulic Fuel Injection System. To solve all the equations numerically we've applied the Runge-kutta IV method. Water hammer equations were applied for the hydraulic pipe solution, and the method of characteristics was employed in our calculations. The simulation results were compared with the experimental results for: Accumulator pressure, Injection pressure and unjection rate. As a result, The simulation results agree very well with our experimental results. We found that a large accumulator and the high speed solenoid valve were required, and the compression volume of the fuel had to be as small as possible in order to acheive ultra-high pressure fuel injection.

  • PDF

Improvement of the Low-Speed Friction Characteristics of a Hydraulic Piston Pump by PVD-Coating of TiN

  • Hong Yeh-Sun;Lee Sang-Yul;Kim Sung-Hun;Lim Hyun-Sik
    • Journal of Mechanical Science and Technology
    • /
    • 제20권3호
    • /
    • pp.358-365
    • /
    • 2006
  • The hydraulic pump of an Electro-hydrostatic Actuator should be able to quickly feed large volume of oil into hydraulic cylinder in order to reduce the response time. On the other hand, it should be also able to precisely dispense small amount of oil through low-speed operation so that the steady state position control error of the actuator can be accurately compensated. Within the scope of axial piston type hydraulic pumps, this paper is focused on the investigation how the surface treatment of their cylinder barrel with TiN plasma coating can contribute to the reduction of the friction and wear rate of valve plate in the low-speed range with mixed lubrication. The results showed that the friction torque of the valve plate mated with a TiN coated cylinder barrel could be reduced to 22% of that with an uncoated original one when load pressure was 300 bar and rotational speed 100 rpm. It means that the torque efficiency of the test pump was expected to increase more than 1.3% under the same working condition. At the same time, the wear rate of the valve plate could be reduced to $40\sim50%$.