• Title/Summary/Keyword: hydraulic control system

Search Result 1,181, Processing Time 0.023 seconds

A Study on Design and Control of Electro-Hydraulic Pump System (전기.유압펌프 시스템의 설계 및 제어에 관한 연구)

  • 박성환;하석홍;이진걸
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.1062-1070
    • /
    • 1995
  • The study deals with controlling the velocity of hydraulic motor with PI controller through the control of displacement pump which has higher efficiency than valve-controlled system. This was done as follows. First, we modified original displacement pump and designed this electrohydraulic puma system. Second, after experimenting static and dynamic characteristics, we identified system parameter of approximated model. Lastly, to control the velocity of hydraulic motor we controlled the angle of the swash plate of displacement pump. Test carried out in the laboratory shows that transient and steady state response could be improved by PI controller reducing power loss.

Pressure Control of Hydraulic Pump using SR Drive with Pressure Predict and Direct Torque Control Method (압력예측기법과 직접순시토크제어기법을 통한 유압펌프용 SRM의 압력제어구동)

  • Lee, Dong-Hee;Seok, Seung-Hun;Liang, Jianing;Ahn, Jin-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.3
    • /
    • pp.171-178
    • /
    • 2008
  • Pressure control of hydraulic pump using SRM with pressure predictor and direct torque control method is presented in this paper. Nowadays, high efficiency and high performance motor drive is much interested in hydraulic pump system. But the hydraulic pump system has an inherent defect that its dynamic behavior causes by interaction between the sensor and hydraulic load. It will make low performance of whole system, even unstable and oscillatory. Proposed system integrates pressure predictor and direct instantaneous torque control (DITC). The pressure predictor includes Smith predictor, which is easy to improve unstable or long oscillation in traditional negative feedback control and popular PID control architectures. And DITC method can reduce inherent torque ripple of SRM, and develop smooth torque to load, which can increase stability and improve the torque response of SR drive. So high dynamic performance and stabilization can achieved proposed hydraulic system. At last, the proposed hydraulic system is verified by simulation and experimental results.

A Study on Life Cycle Extension of T-50 Aircraft Hydraulic Control Valve (T-50 항공기 유압조절 밸브 수명연장 방안)

  • Nam, Yongseo;Kim, Taehwa;Baek, Seungji;Kim, Seunghyu;Song, Seokbon
    • Journal of Aerospace System Engineering
    • /
    • v.4 no.2
    • /
    • pp.16-20
    • /
    • 2010
  • In General, the hydraulic system of T-50 Advanced Trainer is applied to flight control system, wheel & Brake system and fuel system for aircraft operation. The hydraulic system is operation with pressure of 3000psi. and many mechanical parts which is operated by hydraulic system has been stressed in incomplete environment same as heat and friction. for example, Oil leakage had occurred in the shutoff valve of FFP used in a certain period of time. After study, The crack progressed by fatigue due to the irregular hydraulic pressure and vibration has been identified as the reason of oil leakage. This paper presents life cycle extension plans of FFP shutoff valve by configuration improvements of shutoff valve and FFP hydraulic motor.

  • PDF

3D CAD Modeling of a Hydraulic Motor-Load System and Adaptive Control (유압모터-부하계의 3D CAD 모델링 및 적응제어)

  • Cho, S.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.8 no.2
    • /
    • pp.23-28
    • /
    • 2011
  • This paper investigates the motion control of a hydraulic motor-load system using the Simple Adaptive Control (SAC) method. The plant transfer function has been modelled mathematically. The open-loop responses have been obtained experimentally in order to identify the design parameters of transfer function. The hydraulic motor-load system has been modelled using the 3D CAD and imbedded in the hydraulic circuit simulation program to verify the overall performance. The experimental results confirm that the SAC method gives a good tracking performance compared to the PID control.

Model Reference Adaptive Control Using $\delta$-Operator of Hydraulic Servosystem (유압 서보계의 $\delta$연산자를 이용한 모델기준형적응제어)

  • Kim, Ki-Hong;Yoon, Il-Ro;Yum, Man-Oh
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.11
    • /
    • pp.151-157
    • /
    • 2000
  • The MRAC theory has proved to be one of the most popular algorithms in the field of adaptive control, particularly for practical application to devices such as an hydraulic servosystem of which parameters are unknown or varying during operation. For small sampling period, the discrete time system becomes a nonminimal phase system. The $\delta$-MRAC was introduced to obtain the control performance of nonminimal phase system, because the z-MRAC can not control the plant for small sampling period. In this paper, $\delta$-MRAC is applied to the control of an hydraulic servosystem which is composed of servovalve, hydraulic cylinder and inertia load.

  • PDF

Modeling and Control of a Hydraulic Brake Actuator for Vehcile Collision Avoidance Systems (차량 충돌 회피 시스템을 위한 유압브레이크 액츄에이터의 모델링 및 제어)

  • Jo, Yeong-Ju;Ha, Seong-Hyeon;Lee, Gyeong-Su;Heo, Seung-Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.7
    • /
    • pp.537-543
    • /
    • 2000
  • mathematical models for a hydraulic brake actuator and a brake control law for vehicle collision warning/collision avoidance (CW/CA) systems will be presented in this paper. The control law have been designed for optimzied safety and comfort. A solenoid-valve-controlled hydraulic brake actuator system for the CW/CA systems has been investigated, A nonlinear computer model and a linear model of the hydraulic brake actuator system have been developed. Both models were found to represent the actual system with good accuracy. Uncertainties in the brake actuator model have been considered in the design of the control law for the roubustness of the controller. The effects of brake control on CW/CA vehicle response has been investigated via simulations. The simulations were performed using the hydraulic brake system model and a complete nonlinear vehicle model. The results indicate that the proposed brake control law can provide the CW/CA vehicles with an opimized compromise between safety and comfort.

  • PDF

Tracking Control of a Electro-hydraulic Servo System Using 2-Dimensional Real-Time Iterative Learning Algorithm (실시간 2차원 학습 신경망을 이용한 전기.유압 서보시스템의 추적제어)

  • 곽동훈;조규승;정봉호;이진걸
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.6
    • /
    • pp.435-441
    • /
    • 2003
  • This paper addresses that an approximation and tracking control of realtime recurrent neural networks(RTRN) using two-dimensional iterative teaming algorithm for an electro-hydraulic servo system. Two dimensional learning rule is driven in the discrete system which consists of nonlinear output fuction and linear input. In order to control the trajectory of position, two RTRN with the same network architecture were used. Simulation results show that two RTRN using 2-D learning algorithm are able to approximate the plant output and desired trajectory to a very high degree of a accuracy respectively and the control algorithm using two identical RTRN was very effective to trajectory tracking of the electro-hydraulic servo system.

Robust Control of Variable Hydraulic System using Multiple Fuzzy Rules (다수의 퍼지규칙을 이용한 가변유압시스템의 강건제어)

  • 양경춘;안경관;이수한
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.134-134
    • /
    • 2000
  • A switching control using multiple gains in the fuzzy rule is newly proposed for an abruptly changing hydraulic servo system. The proposed scheme employs fuzzy PID control, where modified input parameters are used, and LVQNN(Learning Vector Quantization Neural Network) as a switching controller (supervisor). Simulation and experimental studies have been carried out to validate and illustrate the proposed controller.

  • PDF

A Study on a Novel Flow Control Valve for Wind Power Heat Generation Hydraulic Systems (풍력 열발생 유압 시스템을 위한 새로운 유량제어밸브에 관한 연구)

  • Choi, Sae Ryung;Lee, Ill Yeong;Han, Bong Jun
    • Journal of Drive and Control
    • /
    • v.14 no.1
    • /
    • pp.23-28
    • /
    • 2017
  • A wind power heat generation system that converts wind power directly to heat instead of electric power is considered in this study. The system consists of a wind turbine part and a heat generation part. The heat generation part is materialized by a hydraulic system including a hydraulic pump, a flow control valve, a hydraulic oil tank, etc. The flow control valve primarily converts hydraulic energy generated in the pump to heat energy. It should have a function of overspeed protection under excessive wind speeds. In this study, a novel flow control valve design is proposed for excellent flow control characteristics under excessive pump driving torque (excessive wind speed). The performance of the suggested valve is analyzed using numerical simulation.

A Study on the Shock Characteristics in the Hydraulic Power Shifting System of the Hydraulic Travel Motor (유압주행모터의 변속시 발생하는 충격특성에 관한 연구)

  • Lee, Joo-Seong;Lee, Kye-Bock
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.3
    • /
    • pp.305-310
    • /
    • 2001
  • Hydraulic power shifting systems of hydraulic travel motor may be far safer than mechanical power transmission systems. Thus, hydraulic power shifting systems are widely used for speed control on the hydraulic equipments. In the case of liquid shifting lines, the rapid change of area, such as valve closing, can result in a large pressure transient. It is necessary to assure proper control method in order to obtain the smallest shift shock. This study conducts the shock characteristics of hydraulic power shifting system of the hydraulic travel motor. Experimental results show that shock pressure depends on the operating pressure, flow rate and pipe line area. The shock characteristics can be applied for reducing shocks.

  • PDF