• Title/Summary/Keyword: hydraulic conductivity field

Search Result 137, Processing Time 0.027 seconds

A Study of Probabilistic Groundwater Flow Modeling Considering the Uncertainty of Hydraulic Conductivity (수리전도도의 불확실성을 고려한 확률론적 지하수 유동해석에 관한 연구)

  • Ryu Dong-Woo;Son Bong-Ki;Song Won-Kyong;Joo Kwang-Soo
    • Tunnel and Underground Space
    • /
    • v.15 no.2 s.55
    • /
    • pp.145-156
    • /
    • 2005
  • MODFLOW, 3-D finite difference code, is widely used to model groundwater flow and has been used to assess the effect of excavations on the groundwater system due to construction of subways and mountain tunnels. The results of numerical analysis depend on boundary conditions, initial conditions, conceptual models and hydrogeological properties. Therefore, its accuracy can only be enhanced using more realistic and field oriented input parameters. In this study, SA(simulated annealing) was used to integrate hydraulic conductivities from a few of injection tests with geophysical reference images. The realizations of hydraulic conductivity random field are obtained and then groundwater flows in each geostatistically equivalent media are analyzed with a numerical simulation. This approach can give probabilistic results of groundwater flow modeling considering the uncertainty of hydrogeological medium. In other words, this approach makes it possible to quantify the propagation of uncertainty of hydraulic conductivities into groundwater flow.

Estimation of 3-D Hydraulic Conductivity Tensor for a Cretaceous Granitic Rock Mass: A Case Study of the Gyeongsang Basin, Korea (경상분지 백악기 화강암 암반에 대한 삼차원 수리전도텐서 추정사례)

  • Um, Jeong-Gi;Lee, Dahye
    • The Journal of Engineering Geology
    • /
    • v.32 no.1
    • /
    • pp.41-57
    • /
    • 2022
  • A workflow is presented to estimate the size of a representative elementary volume and 3-D hydraulic conductivity tensor based on fluid flow analysis for a discrete fracture network (DFN). A case study is considered for a Cretaceous granitic rock mass at Gijang in Busan, Korea. The intensity and size of joints were calibrated using the first invariant of the fracture tensor for the 2-D DFN of the study area. Effective hydraulic apertures were obtained by analyzing the results of field packer tests. The representative elementary volume of the 2-D DFN was determined to be 20 m square by investigating the variations in the directional hydraulic conductivity for blocks of different sizes. The directional hydraulic conductivities calculated from the 2-D DFN exhibited strong anisotropy related to the hydraulic behavior of the study area. The 3-D hydraulic conductivity tensor for the fractured rock mass of the study area was estimated from the directional block conductivities of the 2-D DFN blocks generated for various directions in 3-D. The orientations of the principal components of the 3-D hydraulic conductivity tensor were found to be identical to those of delineated joint sets in the study area.

토양 침투특성을 고려한 수문학적 토양군 분류

  • 박승기;정재훈;김옥형
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.53-56
    • /
    • 2002
  • This study was carried out to investigate the characteristics of the field-saturated hydraulic conductivity( $K_{fs}$ ) and matric flux potential(ф$_{m}$) measured by the Guelph Permeameter at the Backokpo watershed in the Han river and at the Bangdong watershed in the Keum river. And the Alpha (a) value which is the ratio of $K_{fs}$ to ф$_{m}$ were determined and the a values along with the defined soil series could be utilized to classify the soil in the Korean watershed into the SCS hydrologic soil groups.ups.

  • PDF

A Study on Velocity-Log Conductivity, Velocity-Head Cross Covariances in Aquifers with Nonstationary Conductivity Fields (비정체형 지하대수층의 속도-대수투수계수, 속도-수두 교차공분산에 관한 연구)

  • Seong, Gwan-Je
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.4
    • /
    • pp.363-373
    • /
    • 1998
  • In this study, random flow field in a nonstationary porous formation is characterized through cross covariances of the velocity with the log conductivity and the head. The hydraulic head and the velocity in saturated aquifers are found through stochastic analysis of a steady, two-dimensional flow field without recharge. Expression for these cross covariances are obtained in quasi-analytic forms all in terms of the parameters which characterize the nonstationary conductivity field and the average head gradient. The cross covariances with a Gaussian correlation function for the log conductivity are presented for two particular cases where the trend is either parallel or perpendicular to the mean head gradient and for separation distances along and across the mean flow direction. The results may be of particular importance in transport predictions and conditioning on field measurements when the log conductivity field is suspected to be nonstationary and also serve as a benchmark for testing nonstationary numerical codes. Keywords : cross covariance, nonstationary conductivity field, saturated aquifer, stochastic analysis.

  • PDF

Sensitivity Analysis of the Leachate Level of a Landfill to Hydraulic Properties of Cover Soil and Waste (매립장의 복토재와 폐기물 수리특성에 대한 침출수위의 민감도 분석)

  • 주완호;장연수;김용인
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.5 no.2
    • /
    • pp.110-115
    • /
    • 1998
  • In this paper, the sensitivity of the leachate level is analyzed using the program HELP to reduce the high leachate level on the landfill. Hydraulic parameters analyzed were porosity, field capacity, wilting point and initial water content of cover soil and waste. Also, the influence of the difference between the initial water content and the field capacity on the leachate level in the landfill was analyzed. The results of the sensitivity analysis show that the increase of the porosity and the wilting point decreases the leachate level, while the increase of the field capacity and the hydraulic conductivity increases the leachate level. Major parameters to the change of the leachate level were the hydraulic conductivity in the case of cover soil and the porosity, the field capacity and the initial water content in the case of waste.

  • PDF

Slope Stability Analysis of Unsaturated Soil Slopes Due to Rainfall Infiltration (강우침투에 따른 불포화 토사사면의 안정해석)

  • 조성은;이승래
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.51-64
    • /
    • 2000
  • This paper presents a procedure of calculating a safety factor of the unsaturated slope suffering from the rainfall infiltration. The process of infiltration into a slope due to rainfall and its effect on the behavior of the soil slope are examined by using a two dimensional finite element flow-deformation coupled analysis. A factor of safety is calculated at various elapsed times after the commencement of rainfall as in the following procedure. First, stresses are estimated at each Gaussian point from the coupled finite element analysis. Then, the global stress smoothing method is applied to get a continuous stress field. Based on this stress field, a factor of safety is calculated for a specified slip surface by a stress integration scheme. Then, a search strategy is used to find out a critical slip surface which is associated with the minimum factor of safety. Some numerical examples are analyzed in order to study the effect of hydraulic conductivity on the slope stability during rain-induced infiltration. According to the results, local failure zone can be formed near the slope surface due to inhomogeneous distribution of hydraulic conductivity If the failure zone is once formed, then the region extends until a large amount of slide activates. Therefore the local failure can be neglected no longer in the stability analysis.

  • PDF

Effects of Forest Environmental Changes on Soil Characteristics by Forest Fire (산화에 의한 산림환경변화가 토양의 특성에 미치는 영향)

  • Nam, Yi;Min, Ell-Sik;Chang, Kwan-Soon;Park, Kwan-Soo;Lee, Yoon-Won
    • Journal of Korea Soil Environment Society
    • /
    • v.3 no.2
    • /
    • pp.61-70
    • /
    • 1998
  • This research has been made for influence of forest environmental changes, such as tree-clearcutting affecting to soil chemical and physical properties, on water storage capacity at forest fire land in Keumsan, Chungnam. The analyzed factors were bulk density, porosity, field moisture saturated hydraulic conductivity air permeability and organic matter content, Field moisture saturated hydraulic conductivity and air permeability at uncutting sites were higher than those at clearcutting sites, especially the most differences were appeared at lower slope. After 2 years passed since forest fire, the most changeable parts of soil characteristics were 5-l5cm depth below soil surface. Total Porosity, coarse pore and fine pore at uncutting sites were higher than those at clearcutting sites. Also, as soil depth increased, total porosity and coarse pore were decreased. Bulk density at uncutting sites was lower than that at clearcutting sites, and was decreased as soil depth increased. The order of the change trend in field moisture saturated hydraulic conductivity, air permeability and porosity was slope lower>middle>upper. Organic matter content at uncutting sites were higher than those at clearcutting sites, and decreased as soil depth increased. As soil depth increased, bulk density had the positive correlation, in other hand, porosity, coarse pore, field moisture saturated hydraulic conductivity, air permeability and organic matter content had the negative correlation. It was concluded that forest environmental changes by forest fire degrade soil physical and chemical properties.

  • PDF

Analyses of Hydrology and Groundwater Level Fluctuation in Granite Aquifer with Tunnel Excavation (터널 굴착에 의한 화강암 대수층의 수리 수문 및 지하수위변동 분석)

  • Chung, Sang-Yong;Kim, Byung-Woo;Kang, Dong-Hwan;Shim, Byoung-Ohan;Cheong, Sang-Won
    • The Journal of Engineering Geology
    • /
    • v.17 no.4
    • /
    • pp.643-653
    • /
    • 2007
  • Average hydraulic conductivity was $2.64{\times}10^{-8}m/sec$ average RQD was 78%, average porosity was 0.51%, and range of groundwater level was $77.06{\sim}125.97m$ by measured in 8 boreholes at the Surak Mt. tunnel area. Groundwater level of two peaks in the Surak Mt. tunnel area were estimated through linear regression analysis for groundwater level versus elevation. And, average horizontal hydraulic gradient in the Surak Mt. tunnel area was calculated 0.267. Minimum, maximum, and average hydraulic conductivities that estimated by field tests were $5.56{\times}10^{-9}m/sec,\;6.12{\times}10^{-8}m/sec,\;and\;2.64{\times}10^{-8}m/sec$, respectively. Groundwater discharge rates per 1 meter that estimated using minimum, maximum, and average hydraulic conductivities and average horizontal hydraulic gradient were $0.00585m^2/day,\;0.06434m^2/day,\;and\;0.02775m^2/day$, respectively. Pure groundwater recharge rate per unit recharge area was calculated 223.96 mm/yr through water balance analysis. Prediction simulation of groundwater level fluctuation with minimum, maximum, and average hydraulic conductivities were conducted. Discharge rate into the Surak Mt. tunnel for minimum hydraulic conductivity was small, but groundwaer drawdown was highly. Discharge rate into the Surak Mt. tunnel for maximum hydraulic conductivity was higher, but groundwaer level was recovered quickly.

Effect of Visible Biopores on the Saturated Hydraulic Conductivity of Soil (가시 생물공극(生物孔隙)이 토양(土壤)의 투수계수(透水係數)에 미치는 영향(影響))

  • Park, Moo-Eon;Yoo, Sun-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.14 no.2
    • /
    • pp.64-69
    • /
    • 1981
  • A field and laboratory experiments were conducted to evaluate the effect of visible biopores (larger than 0.2 mm in diameter) on the saturated hydraulic conductivity of Bonryang sandy loam (Coarse loamy over sandy, mixed, mesic family of Typic Udifluvents) developed on alluvial plains. The saturated hydraulic conductivity was significantly correlated with the equivalent permeble surface area (EPSA) which was calculated from the number of various sized biopores in the soil observed by naked eye, and negatively correlated with the bulk density. The effect of biopores on the saturated hydraulic conductivity was remarkable in subsoil al though it was not pronounced in plowed layer and sandy substrata. The bulk density was found to be correlated with the number and the EPSA of the visible biopores. A remarkable spatial variability was observed in the number of biopore and the bulk density.

  • PDF

Prediction of Hydraulic Conductivity from Gran-size Distribution Parameters (입도분포를 이용한 투수계수의 예측)

  • Song, Young-Woo;Lee, In-Koo
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.3
    • /
    • pp.5-12
    • /
    • 2002
  • Hydraulic conductivity k is one of the most important engineering properties of soil. However, both field and laboratory procedures fur the determination of k are often tedious and expensive. This paper presents new models to predict k using statistical parameters from grain size distribution. A number of permeability tests far 36 types of sands mixed based on statistics were conducted to develop the regression-based models. Parameters used to estimate k are both the geometric mean and geometric standard deviation of the soil samples, or the particle-size distribution curve parameters such as D_{10},D_{50},D_{60}. Hydraulic conductivity predicted by this model is in good agreement with the laboratory measurements fir the soil samples obtained at 20 locations within the Korean Peninsula. The performances of the proposed models were also compared with those of existing models including Hazen's.