• Title/Summary/Keyword: hydration of cement

Search Result 891, Processing Time 0.023 seconds

A Study on the Hydration Characteristics and Fundamental Properties of Ternary Blended Cement Using Ferronickel Slag (페로니켈슬래그 및 고로슬래그 미분말을 결합재로 사용한 삼성분계 시멘트의 수화 특성 및 기초물성에 관한 연구)

  • Cho, Won-Jung;Kim, Han-Sol;Ann, Ki-Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.1
    • /
    • pp.39-48
    • /
    • 2020
  • The present study investigates the chemical reaction and performance of ternary blended binders by mixing ferronickel slag. Cement was replaced using ground granulated blast furnace slag and ferronickel slag, combined up to 50% of the replacement rate. The blended cements were tested by setting times, length change, compressive strength at 1, 3, 7, 28 days. X-ray diffraction and scanning electron microscope were conducted for detecting hydration products while the MIP and microhydation heat were used for examining morphological characteristics. The results showed that by adding ferronickel slag, Pozzolanic reaction occurred, forming a dense pore structure and the effect of reducing hydration heat and dry shrinkage was also found. The compressive strength at 28 days was lower than that of 100% OPC control specimen (OSP0), but ternary blended cements showed no significant difference compared to binary blended (OSP50). If the optimal mix is derived later and used for the purpose, the potential for use as a cement binder is expected.

A Study on the Fundamental and Heat of Hydration Properties of Fly Ash Replacement Concrete Mixed with Coal Gasification Slag for Fine Aggregate (석탄 가스화 용융 슬래그를 잔골재로 사용하는 플라이애시 치환 콘크리트의 기초적 특성 및 수화열에 관한 연구)

  • Han, Min-Cheol;Choi, Il-Kyung
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.36 no.1
    • /
    • pp.155-162
    • /
    • 2020
  • The aim of the research is to investigate the fundamental properties and heat of hydration reducing performance of the fly ash incorporated concrete mixture when the coal gas slag (CGS) from integrated gasification combined cycle (IGCC) is used as fine aggregate. From the results of the experiment, the workability was generally increased and the air content was decreased up to one to four percent with increasing the replacing ratio of CGS to fine aggregate. The compressive strength was similar or increased within five percent to the Plain mixture when the CGS was used as a fine aggregate. When the CGS and fly ash were used same time, the heat of hydration reducing performance was improved than single using cases either CGS or fly ash. Based on the results, for the concrete mixture using CSG as a portion of the combined fine aggregate, the general properties were improved and heat of hydration was decreased approximately 16 % when the fly ash was replaced 30 % to cement and the CGS was replaced less than 50 % to fine aggregate.

The Study of Experiment on Preventing Frost Damage at Early Age of Mortar in Low Temperature using Reduction Slag. (환원슬래그를 사용한 모르타르의 저온에서의 초기동해 방지에 관한 연구)

  • Kim, Hyeong-Cheol;Choi, Hyun-Kuk;Min, Tae-Beom
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.203-204
    • /
    • 2016
  • In this research, it used cement power and reduction slag, which generates high hydration heat in hydration reation without heat cure below -5℃ degree. Purpose of final research is preventing freezing and thawing by making the compressive strength 5MPa in 3days below zero temperature due to own heat of concrete. and it is the result of physical characteristic and thermal property evaluation of reduction slag. Because reduction sag generates high hydration heat, compressive strength development is excellent. By generating highly Hydration heat by C12A7 and C3A in reduction slag, compressive strength is developed in low temperature. In case of displacing only reduction slag without SO3, it is indicated that quick-setting occurs by shortage of SO3. For preventing quick-setting, gypsum is used essentially. According to this research result, in case of using reduction slag and gypsum as a ternary system, Compressive strength developed 5MPa in 3days below zero temperature. It is identified to prevent early frost damage of concrete below zero temperature.

  • PDF

Hydration of $C_4A_3\bar{S}$-Calciumsicate Clinker ($C_4A_3\bar{S}$-Calciumsicate계 크링커의 수화반응)

  • 이승주;최상흘
    • Journal of the Korean Ceramic Society
    • /
    • v.19 no.1
    • /
    • pp.51-57
    • /
    • 1982
  • The clinckers were obtained when a raw mixture consisted of limestone, slags and gypsum was burned at 134$0^{\circ}C$ for 30 minutes, and 128$0^{\circ}C$ for 30 minutes adding $CaF_2$ as a flux. The principal compounds of these clinkers were $C_3S_2$, $\beta-C_2S$, $C_1A_3{\bar{S}}$. To investigate hydration behavior, cements were made and hydrated at constant humidity cabinet (W/C=0.5 20$\pm 1^{\circ}C$). X-ray diffractometer, SEM, and conduction calorimeter were employed to examine the hydration behavior. The hydrates were mainly C-S-H, ettringite, $Ca(OH)_2$. By the hydration of $C_3S$ and $C_4A_3\bar{S}$, the needle-like ettringite filling the inner vacant spaces of the hardened body might contribute to the rapid-hardening and high-strength phenomena. Furthermore, the hardened body became stronger due to the hydration of $C_2S$ at later period. The addition of granulated blastfurnace slags have a potential to be a blended cement.

  • PDF

Hydration Heat Analysis of Seongdeok Cofferdam (성덕 다목적댐 가물막이댐의 수화열 해석)

  • Kim, Jin-Keun;Chu, In-Yeop;Jang, Bong-Seok;Ha, Jae-Dam;Park, Byung-Kook;Kim, Jeong-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.481-484
    • /
    • 2008
  • The temperature crack of concrete structure is caused by the phenomenon which the concrete volume is restricted in the inside or outside part due th the temperature variations induced by the hydration heat of cement. And mass concrete structures are weak in temperature crack. Seongdeok multi-purpose dam is gravity dam which is being constructed in Cheongsong-gun, Gyeonsangbuk-do. Upstream cofferdam was constructed to examine the temperature crack due to hydration heat and to decide the height of placement. Therefore this study performed the hydration heat analysis of Seongdeok upstream coffer dam to analyze the hydration heat according to different height of placement and to compare with measured results.

  • PDF

Evaluation of Hydration Characteristics and NOx-removal Performances of Cement Paste Containing Refined TiO2 Obtained from Waste Sludge (폐수 슬러지에서 정제된 TiO2를 혼입한 시멘트 페이스트의 수화특성 및 질소산화물 제거 성능 평가)

  • Yoon, Hyunno;Seo, Joonho;Kim, Seonhyeok;Bae, Jinho;Kil, Taegeon;Lee, Haeng-Ki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.4
    • /
    • pp.357-364
    • /
    • 2021
  • The present study investigated the hydration properties and NOx-removal performances of the cement pastes containing three different types of TiO2. Two commercially available TiO2 (P-25 and NP-400) and refined TiO2 (GST) obtained from waste sludge were incorporated to cement paste at levels of 0, 5, 10, and 20 wt%. Isothermal calorimetry test results indicated that the TiO2 incorporation induced a notable influence on the reaction kinetics of cement paste, showing the highest cumulative heat release in the samples containing P-25, followed by NP-400 and GST. Quantitative X-ray diffractometry as calculated by the Rietveld method identified that the incorporated TiO2 promoted the formation of C-S-H, ultimately leading to the enhancement in the 28 day-compressive strength of cement pastes. As revealed by SEM/EDS analysis, the content of distributed Ti elements on the surface of the samples was in the order of P-25, GST, and NP-400. Regardless, the NOx-removal performance was the highest in the sample containing P-25, followed by NP-400 and GST.

Properties of Reaction Rim on Blast Furnace Slag Grain with Alkali Activator according to Hydration Reaction (알칼리 자극제(刺戟劑)에 의해 고로(讀爐) 수쇄(水碎) 슬래그의 주위(周圍)에 형성(形成)된 Reaction Rim의 특성(特性))

  • Lee, Seung-Heun;Mun, Young-Bum
    • Resources Recycling
    • /
    • v.18 no.3
    • /
    • pp.42-48
    • /
    • 2009
  • Since there are $OH^-,\;[SiO_4]^{4-}$ ion of high concentration at early hydration in the system added with activator (NaOH+$Na_2OSiO_2$) in the blast furnace slag, different from cement hydration, hydration progresses fast without induction period and forms reaction rim around the blast furnace slag grain. $0.6{\mu}m$ reaction rim was formed around the blast furnace slag grain from the 1 day of reaction period, and the thickness of reaction rim increases over the reaction time, growing to $1{\mu}m$ on the 28 days. Unreacted blast furnace slag grain deformed from angular shape to the spherical shape. Mole ratio of Ca/Si tends to decrease from inside of blast furnace slag grain to reaction rim. Difference of Ca/Si mole ratio between reaction rim and inside the blast furnace slag grain decreased and generated hydrate was a poor crystalline CSH(I) with Ca/Si mole ratio less than 1.5.

Removal of Nitrate by Ferrous Cement Hydrates (2가철 시멘트 수화물에 의한 질산성 질소의 제거)

  • Kang, Wan-Hyup;Park, Tae-Sook;Park, Joo-Yang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.1
    • /
    • pp.53-60
    • /
    • 2005
  • Ferrous cement hydrates made from hydrating Portland cement doped with Fe (II) were reported to reductively dechlorinate chlorinated organics and to reduce Cr (VI) to Cr (III). In this study, kinetics of nitrate removal by ferrous cement hydrates were investigated. Nitrate removal kinetics were characterized by experimental variables such as cement hydration, amount of cement addition, Fe (II) dose, pH, and byproducts. As a result, hydrated cement showed better performances than non-hydrated cement due to the formation of LDH (layered double hydroxide). Doping of Fe (II) into the cement was found to improve removal efficiency at high pHs by association with Fe (II) sorbed on cement hydrates as a reactive reductant. Reduction of nitrate produced ammonium as a major product, which accounted for 63.5% of the final products, and nitrite (0.15%) as a minor product. These results indicate that the developed media are effective as sorbent/reducing agents in the nitrate removal and the reaction mechanisms of nitrate removal are sorption and reduction.

A Study on the Mechanical Properties of Grout Materials Using a Magnetic Field Treated Water (자화수를 사용한 주입재의 역학적 특성에 관한 연구)

  • Chun, Byung-Sik;Yang, Hyung-Chil;Lee, Sang-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.7
    • /
    • pp.65-72
    • /
    • 2006
  • This study is about the estimation of the mechanical properties of cement grout material using a magnetic field treated water instead of tap water. The water that passed through a magnetic system is called MFTW. Similar research indicates that 5% of cement dosage can be saved by decreasing bleeding of concrete and improving resistance to freezing. The reason why MFTW can improve characteristics of concrete can be explained by molecular structure of water. Magnetic force makes water clusters into single molecule or small ones. Hence, the activity of water is improved by the magnetic force. While hydration of cement particles is on progress, the MFTW can penetrate the core region of cement particles more easily. Therefore, the hydration can be carried out more efficiently and the compression strength of concrete is highly improved. The sample of the sodium silicate cement grout's homogel using the MFTW results in highly compressive strength increases in compressive strength approximately from 20% to 50%.

Effects of H$_2$BO$_3$ on the Hydration of $C_4$A$_3$S Blended Rapid Hardign Cement (CSA계 혼합 시멘트 수화에 미치는 Boric Acid 의 영향)

  • Yoo, K.S.;Lee, K.H.;Kim, N.H.;Lee, Y.S.;Hun, K.H.;Lee, J.W.;Yim, Going
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.6
    • /
    • pp.583-593
    • /
    • 1998
  • The study was carried on the influence of {{{{ { {H }_{3 }BO }_{3 } }} for hydration of blended rapid hardening cement which was composed of {{{{ {{C }`_{4 } ^{ }A }_{3 } }} Adding {{{{ { {H }_{3 }BO }_{3 } }} to the mortar of blended rapid hardening cement delayed the setting time and increased the flow of the mortar. When {{{{ { {H }_{3 }BO }_{3 } }} added to the blended rapid hardening cement mono-sulfate was produced rather than ettringite and the existing time of monosulfate also prolonged. After hours monosulfate was converted to ettringite through being producted like gels. This monosulfate phase in-fluences on the setting time and flow of fresh mortar.

  • PDF