DOI QR코드

DOI QR Code

Evaluation of Hydration Characteristics and NOx-removal Performances of Cement Paste Containing Refined TiO2 Obtained from Waste Sludge

폐수 슬러지에서 정제된 TiO2를 혼입한 시멘트 페이스트의 수화특성 및 질소산화물 제거 성능 평가

  • Yoon, Hyunno (Korea Advanced Institute Science and Technology) ;
  • Seo, Joonho (Korea Advanced Institute Science and Technology) ;
  • Kim, Seonhyeok (Korea Advanced Institute Science and Technology) ;
  • Bae, Jinho (Korea Advanced Institute Science and Technology) ;
  • Kil, Taegeon (Korea Advanced Institute Science and Technology) ;
  • Lee, Haeng-Ki (Korea Advanced Institute Science and Technology)
  • 윤현노 (한국과학기술원 건설및환경공학과) ;
  • 서준호 (한국과학기술원 건설및환경공학과) ;
  • 김선혁 (한국과학기술원 건설및환경공학과) ;
  • 배진호 (한국과학기술원 건설및환경공학과) ;
  • 길태건 (한국과학기술원 건설및환경공학과) ;
  • 이행기 (한국과학기술원 건설및환경공학과)
  • Received : 2020.10.28
  • Accepted : 2021.01.14
  • Published : 2021.08.01

Abstract

The present study investigated the hydration properties and NOx-removal performances of the cement pastes containing three different types of TiO2. Two commercially available TiO2 (P-25 and NP-400) and refined TiO2 (GST) obtained from waste sludge were incorporated to cement paste at levels of 0, 5, 10, and 20 wt%. Isothermal calorimetry test results indicated that the TiO2 incorporation induced a notable influence on the reaction kinetics of cement paste, showing the highest cumulative heat release in the samples containing P-25, followed by NP-400 and GST. Quantitative X-ray diffractometry as calculated by the Rietveld method identified that the incorporated TiO2 promoted the formation of C-S-H, ultimately leading to the enhancement in the 28 day-compressive strength of cement pastes. As revealed by SEM/EDS analysis, the content of distributed Ti elements on the surface of the samples was in the order of P-25, GST, and NP-400. Regardless, the NOx-removal performance was the highest in the sample containing P-25, followed by NP-400 and GST.

본 연구에서는 서로 다른 종류의 TiO2 혼입이 시멘트 페이스트의 수화특성 및 질소산화물 제거성능에 미치는 영향에 대해 조사하였다. 상용 제품인 P-25와 NP-400, 폐수 슬러지에서 제조된 GST, 총 세 종류의 TiO2를 시멘트 무게대비 0, 5, 10, 20 % 첨가하여 시멘트 페이스트의 수화특성 및 질소산화물 제거성능을 분석하였다. 미소수화열 측정결과 TiO2의 혼입은 시멘트 페이스트의 초기 수화반응에 큰 영향을 미치는 것이 확인되었으며, P-25, NP-400, GST 순으로 더 높은 누적 발열량을 나타내었다. 이로 인해 Rietveld 분석결과 TiO2 혼입 샘플에서 더 많은 C-S-H의 생성량이 관찰되었으며, 이는 TiO2 혼입 시멘트 페이스트의 28일 압축강도 증가에 영향을 미친 것으로 판단된다. SEM/EDS 분석결과 P-25, GST, NP-400 순으로 페이스트 샘플 표면에 더 많은 Ti 원소의 함량이 관찰되었지만, NOx 제거 성능은 P-25, NP-400, GST 순으로 우수한 것으로 확인되었다.

Keywords

Acknowledgement

본 연구는 국토교통부/국토교통과학기술진흥원의 지원으로 수행되었습니다(과제번호: 21SCIP-B149189-04).

References

  1. Givi, A. N., Rashid, S. A., Aziz, F. N. A. and Salleh, M. A. M. (2010). "Experimental investigation of the size effects of SiO2 nanoparticles on the mechanical properties of binary blended concrete." Composites Part B: Engineering, Vol. 41, No. 8, pp. 673-677. https://doi.org/10.1016/j.compositesb.2010.08.003
  2. Haruehansapong, S., Pulngern, T. and Chucheepsakul, S. (2014). "Effect of the particle size of nanosilica on the compressive strength and the optimum replacement content of cement mortar containing nano-SiO2." Construction and Building Materials, Vol. 50, pp. 471-477. https://doi.org/10.1016/j.conbuildmat.2013.10.002
  3. Hossain, S. M., Park, M. J., Park, H. J., Tijing, L., Kim, J. H. and Shon, H. K. (2019). "Preparation and characterization of TiO2 generated from synthetic wastewater using TiCl4 based coagulation/flocculation aided with Ca(OH)2." Journal of Environmental Management, Vol. 250, pp. 109521.
  4. Jansen, D., Goetz-Neunhoeffer, F., Stabler, C. and Neubauer, J. (2011). "A remastered external standard method applied to the quantification of early OPC hydration." Cement and Concrete Research, Vol. 41, No. 6, pp. 602-608. https://doi.org/10.1016/j.cemconres.2011.03.004
  5. Karapati, S., Giannakopoulou, T., Todorova, N., Boukos, N., Antiohos, S., Papageorgiou, D., Chaniotakis, E., Dimotikali, D. and Trapalis, C. (2014). "TiO2 functionalization for efficient NOx removal in photoactive cement." Applied Surface Science, Vol. 319, pp. 29-36. https://doi.org/10.1016/j.apsusc.2014.07.162
  6. Kim, J. B., Lee, K. W., Park, S. M., Shon, H. K., Shahid, M., Saliby, I. E., Lee, W. E., Kim, G. J. and Kim, J. H. (2013). "Preparation of iron-doped titania from flocculated sludge with iron-titanium composite coagulant." Journal of Nanoscience and Nanotechnology, Vol. 13, No. 6, pp. 4106-4109. https://doi.org/10.1166/jnn.2013.7017
  7. Liu, J., Li, Q. and Xu, S. (2015). "Influence of nanoparticles on fluidity and mechanical properties of cement mortar." Construction and Building Materials, Vol. 101, pp. 892-901. https://doi.org/10.1016/j.conbuildmat.2015.10.149
  8. Rhee, I. K., Lee, J. S., Kim, J. B. and Kim, J. H. (2018). "Nitrogen oxides mitigation efficiency of cementitious materials incorporated with TiO2." Materials, Vol. 11, No. 6, pp. 877. https://doi.org/10.3390/ma11060877
  9. Seo, J. H., Park, S. M., Yang, B. J. and Jang, J. G. (2019). "Calcined oyster shell powder as an expansive additive in cement mortar." Materials, Vol. 12, No. 8, pp. 1322. https://doi.org/10.3390/ma12081322
  10. Serpone, N. (2018). "Heterogeneous photocatalysis and prospects of TiO2-based photocatalytic DeNOxing the atmospheric environment." Catalysts, Vol. 8, No. 11, pp. 553. https://doi.org/10.3390/catal8110553
  11. Sugranez, R., Alvarez, J. I., Cruz-Yusta, M., Marmol, I., Morales, J., Vila, J. and Sanchez, L. (2013). "Enhanced photocatalytic degradation of NOx gases by regulating the microstructure of mortar cement modified with titanium dioxide." Building and Environment, Vol. 69, pp. 55-63. https://doi.org/10.1016/j.buildenv.2013.07.014
  12. Yu, R., Spiesz, P. and Brouwers, H. J. H. (2014). "Effect of nano-silica on the hydration and microstructure development of UltraHigh Performance Concrete (UHPC) with a low binder amount." Construction and Building Materials, Vol. 65, pp. 140-150. https://doi.org/10.1016/j.conbuildmat.2014.04.063
  13. Zouzelka, R. and Rathousky, J. (2017). "Photocatalytic abatement of NOx pollutants in the air using commercial functional coating with porous morphology." Applied Catalysis B: Environmental, Vol. 217, pp. 466-476. https://doi.org/10.1016/j.apcatb.2017.06.009