• Title/Summary/Keyword: hydration of cement

Search Result 886, Processing Time 0.035 seconds

The Reduction of Maximum Hydration Temperature in Cement Paste Using Calcium Silicate Hydrates and Glucose (칼슘실리케이트 수화물과 포도당을 이용한 시멘트 페이스트의 최대 수화온도 저감)

  • Moon, Hoon;Kim, Hyeong-Keun;Ryu, Eun-Ji;Jin, Eun-Ji;Chung, Chul-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.3
    • /
    • pp.265-272
    • /
    • 2015
  • In this study, a method to reduce temperature rise due to hydration in mass concrete is investigated. It is to use retarder (glucose) for reducing heat of hydration and to use calcium silicate hydrate (C-S-H) for compensating the retardation effect due to its role as a nucleation seed. For this purpose, the temperature rise of cement paste due to hydration was measured and the effect of using both C-S-H and glucose on setting and 28-day compressive strength of mortar specimens was investigated. According to the experimental results, using C-S-H and glucose caused the reduction in the maximum temperature but accelerated the time to reach the maximum temperature compared to that of retarded cement paste using glucose. In addition, using C-S-H and glucose did not show significant effect on 28-day compressive strength of mortar specimens, indicating that the method shown in this study can be a successful alternative to control maximum temperature rise in mass concrete.

A Parameter Study on Heat of Hydration in Mass Concrete Affected by Foundation Depth and Various Thermal Properties (지반 깊이 및 열특성 영향에 따른 매스콘크리트의 수화열 해석)

  • 채숙희;양성철;박종원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.799-804
    • /
    • 2002
  • This paper is mainly Intended to show an effect of foundation depth on heat of hydration in mass concrete. From the analysis, it was found that the foundation depth which is not affected by the heat conduction is more than 5 m. But this study shows that, an optimum foundation depth for the FEM analysis for heat of hydration in mass concrete is approximately 1 m from this study. And in order to study tile significance of various parameters, a sensitivity analysis of heat transfer in mass concrete is performed and the amount of heat liberated at complete hydration of unit weight of cement and the reaction velocity of hydration are the most sensitive parameters factors of other various parameters.

  • PDF

Effect of Fineness of GGBS on the Hydration and Mechanical Properties in HIGH Performance HVGGBS Cement Paste (고성능 하이볼륨 슬래그 시멘트 페이스트의 고로슬래그 미분말 분말도에 따른 수화 및 강도 특성)

  • Choi, Young Cheol;Shin, Dongcheol;Hwang, Chul-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.141-147
    • /
    • 2017
  • Recently, lots of researches on concrete with high volume mineral admixtures such as ground granulated blast-furnace slag(GGBS) have been carried out to reduce greenhouse gas. The high volume GGBS concrete has advantages such as low heat, high durability, but it has a limitation in practical field application, especially low strength development in early ages. This study investigated the compressive strength and hydration characteristics of high performanc and volume GGBS cement pastes with low water to binder ratio. The effects of fineness($4,330cm^2/g$, $5,320cm^2/g$, $6,450cm^2/g$, $7650cm^2/g$) and replacement(35%, 50%, 65%, 80%) of GGBS on the compressive strength, setting and heat of hydration were analyzed. Experimental results show that the combination of high volume slag cement paste with low water to binder ratio and high fineness GGBS powder can improve the compressive strength at early ages.

Influence of Drying Methods on Measurement of Hydration Degree of Hydraulic Inorganic Materials: 1) Ordinary Portland cement paste and mortar (수경성 무기재료의 수화도 측정에 대한 건조방법의 영향: 1) 보통 포틀랜드 시멘트 페이스트 및 모르타르)

  • Lee, Hyo Kyoung;Kim, Hyeong-Ki
    • Resources Recycling
    • /
    • v.27 no.1
    • /
    • pp.92-105
    • /
    • 2018
  • The present study was carried out to find a suitable drying method for measuring non-evaporable water contents of various hydraulic inorganic materials. In Part 1 of the paper, the case Ordinary Portland cement is discussed. Various drying methods including vacuum and oven drying, and an ignition, were used for the OPC paste and mortar having different w/c. The sole vacuum drying under room temperature led a fluctuation on measurement of hydration degree, while the sole oven drying also yielded unwanted hydration promotion at the early age. A combination of the vacuum and oven drying was considered as a suitable drying method for the OPC case.

Hydration-heat Characteristics of Mortar mixed with Strontium Hydration-heat Reducing Material (스트론튬계 수화열저감재 혼입 모르타르의 수화발열 특성)

  • Kim, Goo-Hwan;Kim, Gyu-Yong;Lee, Sang-Kyu;Hwang, Eui-Chul;Kim, Gyeong-Tae;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.33-34
    • /
    • 2018
  • As a result of measuring the compressive strength and semi-adiabatic temperature rise of the mixed mortar, it was confirmed that the mortar mixed with the hydration heat reducing material is effective. On the other hand, the compressive strength showed similar strength to that of moderate heat Portland cement until the age 7 days, but after that, the tendency of the strength development to be delayed was confirmed.

  • PDF

Generation of Hydration Heat of the Concrete Combined Coarse Particle cement and Fly ash (조분시멘트와 플라이애시를 조합 사용한 콘크리트의 수화발열 특성)

  • Lee, Chung-Sub;Baek, Dae-Hyun;Cha, Wan-Ho;Kwon, O-Bong;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.889-892
    • /
    • 2008
  • This study, having combined and displaced fly ash known as admixture material that delays hydration reaction with coarse particle cement("CC" hereinafter) collected in particle classification method during ordinary portland cement("OPC" hereinafter), reviewed the hydration heat characteristics affecting the concrete. To reduce hydration heat, the study plain-mixed which used 100% OPC for WB 50% level 1, displaced CC at level 3 of 25%, 50% and 75% for OPC, and by displacing FA with admixture material at level 5 of 0%, 10%, 20%, 30% and 40%, experimented totally 16 batches. As a result of experiment, in the case of flow, the more CC displacement rate increased, the more it tended to decrease, and the more FA displacement rate increased, the more it decreased. As for simple adiabatic temperature rise by the CC and FA displacement rates, it decreased as displacement rate increased, and particularly in the case of FA40, temperature rise amount, $5.8{\sim}7.4^{\circ}C$, was very low. Compressive strength decreased in proportion to displacement rate, however strength reduction increment was shown to decrease with age progress.

  • PDF

Electro-mechanical impedance based strength monitoring technique for hydrating blended cements

  • Thirumalaiselvi, A.;Sasmal, Saptarshi
    • Smart Structures and Systems
    • /
    • v.25 no.6
    • /
    • pp.751-764
    • /
    • 2020
  • Real-time monitoring of stiffness and strength in cement based system has received significant attention in past few decades owing to the development of advanced techniques. Also, use of environment friendly supplementary cementitious materials (SCM) in cement, though gaining huge interest, severely affect the strength gain especially in early ages. Continuous monitoring of strength- and stiffness- gain using an efficient technique will systematically facilitate to choose the suitable time of removal of formwork for structures made with SCM incorporated concrete. This paper presents a technique for monitoring the strength and stiffness evolution in hydrating fly ash blended cement systems using electro-mechanical impedance (EMI) based technique. It is important to observe that the slower pozzolanic reactivity of fly ash blended cement systems could be effectively tracked using the evolution of equivalent local stiffness of the hydrating medium. Strength prediction models are proposed for estimating the strength and stiffness of the fly ash cement system, where curing age (in terms of hours/days) and the percentage replacement of cement by fly ash are the parameters. Evaluation of strength as obtained from EMI characteristics is validated with the results from destructive compression test and also compared with the same obtained from commonly used ultrasonic wave velocity (UPV). Statistical error indices indicate that the EMI technique is capable of predicting the strength of fly ash blended cement system more accurate than that from UPV. Further, the correlations between stiffness- and strength- gain over the time of hydration are also established. From the study, it is found that EMI based method can be effectively used for monitoring of strength gain in the fly ash incorporated cement system during hardening.

An Experimental Study on the Properties of UHPC with Different Types of Cements (시멘트 종류에 따른 초고성능 콘크리트의 특성에 관한 실험적 연구)

  • Park, Jung-Jun;Kang, Su-Tae;Ryu, Gum-Sung;Koh, Gyung-Taek;Kim, Sung-Wook;Lee, Jang-Hwa
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.345-348
    • /
    • 2008
  • A Cement account for the most amount than other materials in the material composition of ultra-high-performance concrete. If we especially consider the effect of high temperature curing on the cement hydration and the problems of autogenous shrinkage, heat of hydration we need selection of proper cement type by grasping influence of cement in the properties of UHPC. Therefore, in this paper we examined properties of fluidity, compressive strength and elastic modulus of UHPC due to domestic portland cement types. In results, we could get a result that the low heat cement increase fluidity, compressive strength in UHPC compare with high early strength cement and ordinary portland cement. we are systematically going to examination on the influence of UHPC by domestic portland cement types.

  • PDF

Effects of pre-curing periods on pore structures of ordinary Portland cement pastes with calcium silicate cement powder

  • Kim, Gwang Mok
    • Journal of Urban Science
    • /
    • v.12 no.1
    • /
    • pp.1-10
    • /
    • 2023
  • The cement industry is a major source of carbon dioxide emissions. Reduction in emissions in this sector is an important issue. Calcium silicate cement is a type of alternative to ordinary Portland cements which contributes to the reduction in carbon dioxide emissions. However, because the type of cement is a non-hydraulic material, there are limitations to its application in the field. The effects of pre-curing periods on the physical characteristics of ordinary Portland cement pastes with calcium silicate cement in the present study were investigated. The Independent variable is the pre-curing period. The pre-curing period varied from 0 to 5 hrs, considering the hydration characteristics of ordinary Portland cement. The carbonation curing of the ordinary Portland cement pastes with the calcium silicate cement after pre-curing was conducted. The concentration of gaseous CO2 was fixed at 20 %. The test results showed that the pre-curing period led to the pore structural change of the pastes, which in turn could affect the further reaction under the long-term curing condition.