DOI QR코드

DOI QR Code

Effects of pre-curing periods on pore structures of ordinary Portland cement pastes with calcium silicate cement powder


Abstract

The cement industry is a major source of carbon dioxide emissions. Reduction in emissions in this sector is an important issue. Calcium silicate cement is a type of alternative to ordinary Portland cements which contributes to the reduction in carbon dioxide emissions. However, because the type of cement is a non-hydraulic material, there are limitations to its application in the field. The effects of pre-curing periods on the physical characteristics of ordinary Portland cement pastes with calcium silicate cement in the present study were investigated. The Independent variable is the pre-curing period. The pre-curing period varied from 0 to 5 hrs, considering the hydration characteristics of ordinary Portland cement. The carbonation curing of the ordinary Portland cement pastes with the calcium silicate cement after pre-curing was conducted. The concentration of gaseous CO2 was fixed at 20 %. The test results showed that the pre-curing period led to the pore structural change of the pastes, which in turn could affect the further reaction under the long-term curing condition.

Keywords

Acknowledgement

This work was supported by the Industrial Strategic technology development program-Development of manufacturing technology of hardened cement with carbonation curing (RS-2022-00155662, Development of manufacturing and application technology of 1,000 ton/year class hardened cement with carbonation curing) funded By the Ministry of Trade, Industry & Energy (MOTIE, Korea).

References

  1. Buzatu, A., Dill, H. G., Buzgar, N., Damian, G., Maftei, A. E., Apopei, A. I. (2016), "Efflorescent sulfates from Baia Sprie mining area (Romania)-acid mine drainage and climatological approach." Science of the Total Environment, Vol. 542, pp. 629-641. https://doi.org/10.1016/j.scitotenv.2015.10.139
  2. Ashraf, W., Olek, J., Jain, J. (2017), "Microscopic features of non-hydraulic calcium silicate cement paste and mortar." Cement and Concrete Research, Vol. 100, pp. 361-372. https://doi.org/10.1016/j.cemconres.2017.07.001
  3. Bakolas, A., Aggelakopoulou, E., Moropoulou, A., Anagnostopoulou, S. (2006), "Evaluation of pozzolanic activity and physicomechanical characteristics in metakaolin-lime pastes." Journal of Thermal Analysis and Calorimetry, Vol. 84(1), pp. 157-163. https://doi.org/10.1007/s10973-005-7262-y
  4. Chen, Y., Al-Neshawy, F., Punkki, J. (2021), "Investigation on the effect of entrained air on pore structure in hardened concrete using MIP." Construction and Building Materials, Vol. 292, pp. 123441.
  5. Cui, L., Cahyadi, J. H. (2001), "Permeability and pore structure of OPC paste." Cement and Concrete Research, Vol. 31(2), pp. 277-282. https://doi.org/10.1016/S0008-8846(00)00474-9
  6. El-Sayed, M. A., El-Samni, T. M. (2006), "Physical and chemical properties of rice straw ash and its effect on the cement paste produced from different cement types." Journal of King Saud University-Engineering Sciences, Vol. 19(1), pp. 21-29. https://doi.org/10.1016/S1018-3639(18)30845-6
  7. Engel'sht, V. S., Muratalieva, V. Z. (2013), "Thermal interaction between limestone and silica." High Temperature, Vol. 51(6), pp. 769-775. https://doi.org/10.1134/S0018151X13060084
  8. Gal, A., Weiner, S., Addadi, L. (2010), "The stabilizing effect of silicate on biogenic and synthetic amorphous calcium carbonate." Journal of the American Chemical Society, Vol. 132(38), pp. 13208-13211. https://doi.org/10.1021/ja106883c
  9. Hasanbeigi, A., Price, L., Lin, E. (2012), "Emerging energy-efficiency and CO2 emission-reduction technologies for cement and concrete production: A technical review." Renewable and Sustainable Energy Reviews, Vol. 16(8), pp. 6220-6238. https://doi.org/10.1016/j.rser.2012.07.019
  10. Huanhai, Z., Xuequan, W., Zhongzi, X., Mingshu, T. (1993), "Kinetic study on hydration of alkali-activated slag." Cement and Concrete Research, Vol. 23(6), pp. 1253-1258. https://doi.org/10.1016/0008-8846(93)90062-E
  11. Jeong, H. (2020), "The influence of pore system characteristics on absorption and freeze-thaw resistance of carbonated, low-lime calcium silicate cement (CSC) based materials." (Doctoral dissertation, Purdue University Graduate School).
  12. Kim, G. M. (2022), "Effects of carbonation on hydration characteristics of ordinary Portland cement at pre-curing condition." Journal of Urban Science, Vol. 11, pp. 21-28. https://doi.org/10.22645/UDI.2022.12.15.021
  13. Kim, G. M., Jang, J. G., Naeem, F., Lee, H. K. (2015), "Heavy metal leaching, CO2 uptake and mechanical characteristics of carbonated porous concrete with alkali-activated slag and bottom ash." International Journal of Concrete Structures and Materials, Vol. 9, pp. 283-294. https://doi.org/10.1007/s40069-015-0111-x
  14. Lee, S. W., Kim, Y. J., Lee, Y. H., Guim, H., Han, S. M. (2016), "Behavior and characteristics of amorphous calcium carbonate and calcite using CaCO3 film synthesis." Materials & Design, Vol. 112, pp. 367-373. https://doi.org/10.1016/j.matdes.2016.09.099
  15. Lin, R. Y., Zhang, J. Y., Zhang, P. X. (2002), "Nucleation and growth kinetics in synthesizing nanometer calcite." Journal of Crystal Growth, Vol. 245(3-4), pp. 309-320. https://doi.org/10.1016/S0022-0248(02)01739-6
  16. Morris, P. D., McPherson, I. J., Meloni, G. N., Unwin, P. R. (2020), "Nanoscale kinetics of amorphous calcium carbonate precipitation in H2O and D2O." Physical Chemistry Chemical Physics, Vol. 22(38), pp. 22107-22115. https://doi.org/10.1039/D0CP03032E
  17. Nudelman, F., Sonmezler, E., Bomans, P. H., Sommerdijk, N. A. (2010), "Stabilization of amorphous calcium carbonate by controlling its particle size." Nanoscale, Vol. 2(11), pp. 2436-2439. https://doi.org/10.1039/c0nr00432d
  18. Politi, Y., Batchelor, D. R., Zaslansky, P., Chmelka, B. F., Weaver, J. C., Sagi, I., Addadi, L. (2010), "Role of magnesium ion in the stabilization of biogenic amorphous calcium carbonate: A structure? function investigation." Chemistry of Materials, Vol. 22(1), pp. 161-166. https://doi.org/10.1021/cm902674h
  19. Provis, J. L. (2018), "Alkali-activated materials." Cement and concrete research, Vol. 114, pp. 40-48. https://doi.org/10.1016/j.cemconres.2017.02.009
  20. Rahman, A., Rasul, M. G., Khan, M. M. K., Sharma, S. (2015), "Recent development on the uses of alternative fuels in cement manufacturing process." Fuel, Vol. 145, pp. 84-99. https://doi.org/10.1016/j.fuel.2014.12.029
  21. Seo, J., Kim, S., Jang, D., Kim, H., Lee, H. K. (2021), "Internal carbonation of belite-rich Portland cement: An in-depth observation at the interaction of the belite phase with sodium bicarbonate." Journal of Building Engineering, Vol. 44, pp. 102907.
  22. Shi, C., Day, R. L. (1995), "A calorimetric study of early hydration of alkali-slag cements." Cement and concrete Research, Vol. 25(6), pp. 1333-1346. https://doi.org/10.1016/0008-8846(95)00126-W
  23. Silva, D. A., John, V. M., Ribeiro, J. L. D., Roman, H. R. (2001), "Pore size distribution of hydrated cement pastes modified with polymers." Cement and Concrete Research, Vol. 31(8), pp. 1177-1184. https://doi.org/10.1016/S0008-8846(01)00549-X
  24. Sun, S., Chevrier, D. M., Zhang, P., Gebauer, D., Clfen, H. (2016), "Distinct Short-Range Order Is Inherent to Small Amorphous Calcium Carbonate Clusters (< 2 nm)." Angewandte Chemie International Edition, Vol. 55(40), pp. 12206-12209. https://doi.org/10.1002/anie.201604179
  25. Thomas, R. J., Maguire, M., Sorensen, A. D., Quezada, I. (2018), "Calcium sulfoaluminate cement." Concrete International, Vol. 40(4), pp. 65-69.
  26. Walling, S. A., Provis, J. L. (2016), "Magnesia-based cements: a journey of 150 years, and cements for the future?." Chemical reviews, Vol. 116(7), pp. 4170-4204. https://doi.org/10.1021/acs.chemrev.5b00463
  27. Wang, X., Guo, M. Z., Ling, T. C. (2022), "Review on CO2 curing of non-hydraulic calcium silicates cements: mechanism, carbonation and performance." Cement and Concrete Composites, pp. 104641.
  28. Xu, J. H., Fleiter, T., Fan, Y., Eichhammer, W. (2014), "CO2 emissions reduction potential in China's cement industry compared to IEA's Cement Technology Roadmap up to 2050." Applied Energy, Vol. 130, pp. 592-602. https://doi.org/10.1016/j.apenergy.2014.03.004
  29. Yi, S. T., Moon, Y. H., Kim, J. K. (2005), "Long-term strength prediction of concrete with curing temperature." Cement and Concrete Research, Vol. 35(10), pp. 1961-1969. https://doi.org/10.1016/j.cemconres.2005.06.010
  30. Zhang, D., Ghouleh, Z., Shao, Y. (2017), "Review on carbonation curing of cement-based materials." Journal of CO2 Utilization, Vol. 21, pp. 119-131. https://doi.org/10.1016/j.jcou.2017.07.003