• Title/Summary/Keyword: hybrid techniques

Search Result 746, Processing Time 0.031 seconds

MECHANICAL PROPERTIES AND MICROLEAKAGE OF COMPOSITE RESIN MATERIALS CURED BY VARIABLE LIGHT INTENSITIES (가변 광도에 따른 복합레진의 기계적 물성 및 변연누출도 변화)

  • Han, Seung-Ryul;Min, Kyung-San;Shin, Dong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.28 no.2
    • /
    • pp.134-145
    • /
    • 2003
  • Mechanical properties and microleakage of two composites [conventional hybrid type DenFil (VERICOM Co., Anyang, Korea) / micro matrix hybrid type Esthet X (Dentsply Caulk, Milford, DE, U.S.A.)] were evaluated to assess whether variable light intensity curing is better than conventional curing technique. Curing was done for 40 seconds in two ways of 2 step soft-start technique and 5 step ramping technique. Three kinds of light intensities of 50, 100, $200{\;}mW/\textrm{cm}^2$ were initially used for 10, 20, 30 seconds each and the maximum intensity of $600 {\;}mW/\textrm{cm}^2$ was used for the rest of curing time in a soft-start curing tech nique. In a ramping technique, curing was done with the same initial intensities and the light intensity was increased 5 times with the same rate to the maximum intensity of $600{\;}mW/\textrm{cm}^2$. After determining conditions that showed no different mechanical properties with conventional technique, Esthet X composite was filled in a class V cavity, which dimension was $4{\times}3{\times}1.5{\;}mm$ and cured under those conditions. Microleakage was evaluated in two ways of dye penetration and maximum gap estimation through SEM observation. ANOVA and Spearman's rho test were used to confirm any statistical significance among groups. The results were as follows : 1 Several curing conditions of variable light intensities resulted in the similar mechanical properties with a conventional continuous curing technique, except conditions that start curing with an initial light intensity of $50{\;}mW/\textrm{cm}^2$. 2. Conventional and ramping techniques were better than soft-start technique in mechanical properties of microhardness and compressive strength. 3. Soft-start group that started curing with an initial light intensity of $100{\;}mW/\textrm{cm}^2$ for 10 seconds showed the least dye penetration. Soft-start group that started curing with an initial light intensity of $200{\;}mW/\textrm{cm}^2$ for 10 seconds showed the smallest marginal gap, if there was no difference among groups. 4. Soft-start technique resulted in better dye-proof margin than conventional technique(p=0.014) and ramping technique(p = 0.002). 5. There was a very low relationship(p=0.157) between the methods of dye penetration and marginal gap determination through SEM evaluation. From the results of this study, it was revealed that ramping technique would be better than conventional technique in mechanical properties, however, soft-start technique might be better than conventional one in microleakage. It was concluded that much endeavor should be made to find out the curing conditions, which have advantages of both aspects or to solve these kinds of problems through a novel idea of polymerization.

Multi-Tone Anti-Jamming Performance Analyses of MSK & QPSK Modulation Hybrid DS-SFH Spread-Spectrum System (MSK와 QPSK 변조 DS-SFH 확산시스템의 다중톤 항재밍 성능 분석)

  • Kim, Yun-Yeong;Yu, Heung-Gyun;Kim, Gi-Geun;Choe, Yeong-Gyun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.37 no.8
    • /
    • pp.1-10
    • /
    • 2000
  • Performance analyses of hybrid DS-SFH spread-spectrum systems using coherent MSK and QPSK modulation techniques are considered over Rayleigh fading channel in the presence of multi-tone jamming. The BER equations for MSK and QPSK systems with non-diversity reception in the receiver are derived as the concept of average signal-to-noise power ratio E$\_$b//N$\_$0/ and jamming-to-signal power ratio JSR, and the performances is evaluated for various system parameters. The evaluation of performance is done between fading and nonfading system, and between MSK and QPSK system. Results show that the performances of two systems are similar in low JSR. However, MSK system outperforms QPSK system as JSR increases. Overall performances of two systems are a little improved as the DS spreading gain increases for the total spread-spectrum bandwidth fixed. The performance difference between fading system and nonfading system is similar in low E$\_$b//N$\_$0/, however, it becomes very largewith increase of E$\_$b//N$\_$0/..

  • PDF

Mechanical evaluation of the use of conventional and locking miniplate/screw systems used in sagittal split ramus osteotomy

  • Santos, Zarina Tatia Barbosa Vieira;Goulart, Douglas Rangel;Sigua-Rodriguez, Eder Alberto;Pozzer, Leandro;Olate, Sergio;Albergaria-Barbosa, Jose Ricardo
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.43 no.2
    • /
    • pp.77-82
    • /
    • 2017
  • Objectives: The aim of this study was to compare the mechanical resistance of four different osteosyntheses modeled in two different sagittal split ramus osteotomy (SSRO) designs and to determine the linear loading in a universal testing machine. Materials and Methods: An in vitro experiment was conducted with 40 polyurethane hemimandibles. The samples were divided into two groups based on osteotomy design; Group I, right angles between osteotomies and Group II, no right angles between osteotomies. In each group, the hemimandibles were distributed into four subgroups according to the osteosynthesis method, using one 4-hole 2.0 mm conventional or locking plate, with or without one bicortical screw with a length of 12.0 mm (hybrid technique). Each subgroup contained five samples and was subjected to a linear loading test in a universal testing machine. Results: The peak load and peak displacement were compared for statistical significance using PASW Statistics 18.0 (IBM Co., USA). In general, there was no difference between the peak load and peak displacement related to osteotomy design. However, when the subgroups were compared, the osteotomy without right angles offered higher mechanical resistance when one conventional or locking 2.0 mm plate was used. One locking plate with one bicortical screw showed higher mechanical resistance ($162.72{\pm}42.55N$), and these results were statistically significantly compared to one conventional plate with monocortical screws (P=0.016) and one locking plate with monocortical screws (P=0.012). The difference in peak displacement was not statistically significant based on osteotomy design or internal fixation system configuration. Conclusion: The placement of one bicortical screw in the distal region promoted better stabilization of SSRO. The osteotomy design did not influence the mechanical behavior of SSRO when the hybrid technique was applied.

Genetic Species Identification by Sequencing Analysis of Nuclear and Mitochondrial Genes for Albino Misgurnus Species from Korea (우리나라 미꾸리속(genus Misgurnus) 알비노 개체의 미토콘드리아 및 핵 유전자 염기서열 분석에 의한 유전적 동정)

  • Song, Ha-Youn;Moon, Shin-Joo;Kim, Keun-Sik;Bang, In-Chul
    • Korean Journal of Ichthyology
    • /
    • v.29 no.2
    • /
    • pp.139-145
    • /
    • 2017
  • The spontaneous color mutant, albino individuals of genus Misgurnus, are rarely discovered in Korea and there are difficult to identify morphological species due to lack melanin pigmentation. In this study, we developed a genetic identification method for the species of albino Misgurnus individuals based on phylogenetic analysis by using recombination activating gene 1 (rag1) and cytochrome b (cytb) region of mitochondrial DNA. As a result of molecular phylogenetic analysis, three clades were identified as Misgurnus mizolepis, M. anguillicaudatus and M. mohoity. The homology of the cytb sequences of M. mohoity was best match to that of M. mohoity sequences in GenBank database. As a result of species identification of 25 albino Misgurnus individuals based on the phylogenetic tree, the red-eye type was identified as 16 M. anguillicaudatus and one M. mizolepis. The remaining three individuals were identified as one M. mizolepis ♀${\times}$M. anguillicaudatus ♂, and two M. mohoity ♀${\times}$M. anguillicaudatus ♂, respectively. In addition, the five black-eye type individuals were identified as one M. anguillicaudatus, three M. mizolepis and one M. mohoity. Therefore, this genetic identification method will be an useful techniques for species or hybrid identification in genus Misgurnus.

A Study on Traffic Prediction Using Hybrid Approach of Machine Learning and Simulation Techniques (기계학습과 시뮬레이션 기법을 융합한 교통 상태 예측 방법 개발 연구)

  • Kim, Yeeun;Kim, Sunghoon;Yeo, Hwasoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.5
    • /
    • pp.100-112
    • /
    • 2021
  • With the advent of big data, traffic prediction has been developed based on historical data analysis methods, but this method deteriorates prediction performance when a traffic incident that has not been observed occurs. This study proposes a method that can compensate for the reduction in traffic prediction accuracy in traffic incidents situations by hybrid approach of machine learning and traffic simulation. The blind spots of the data-driven method are revealed when data patterns that have not been observed in the past are recognized. In this study, we tried to solve the problem by reinforcing historical data using traffic simulation. The proposed method performs machine learning-based traffic prediction and periodically compares the prediction result with real time traffic data to determine whether an incident occurs. When an incident is recognized, prediction is performed using the synthetic traffic data generated through simulation. The method proposed in this study was tested on an actual road section, and as a result of the experiment, it was confirmed that the error in predicting traffic state in incident situations was significantly reduced. The proposed traffic prediction method is expected to become a cornerstone for the advancement of traffic prediction.

The Future of NVH Research - A Challenge by New Powertrains

  • Genuit, Ing. K.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.05a
    • /
    • pp.48-48
    • /
    • 2010
  • Sound quality and NVH-issues(Noise, Vibration and Harshness) of vehicles has become very important for car manufacturers. It is interpreted as among the most relevant factors regarding perceived product quality, and is important in gaining market advantage. The general sound quality of vehicles was gradually improved over the years. However, today the development cycles in the automotive industry are constantly reduced to meet the customers' demands and to react quickly to market needs. In addition, new drive and fuel concepts, tightened ecological specifications, increase of vehicle classes and increasing diversification(increasing market for niche vehicles), etc. challenge the acoustic engineers trying to develop a pleasant, adequate, harmonious passenger cabin sound. Another aspect concerns the general pressure for reducing emission and fuel consumption, which lead to vehicle weight reductions through material changes also resulting in new noise and vibration conflicts. Furthermore, in the context of alternative powertrains and engine concepts, the new objective is to detect and implement the vehicle sound, tailored to suit the auditory expectations and needs of the target group. New questions must be answered: What are appropriate sounds for hybrid or electric vehicles? How are new vehicle sounds perceived and judged? How can customer-oriented, client-specific target sounds be determined? Which sounds are needed to fulfil the driving task, and so on? Thus, advanced methods and tools are necessary which cope with the increasing complexity of NVH-problems and conflicts and at the same time which cope with the growing expectations regarding the acoustical comfort. Moreover, it is exceedingly important to have already detailed and reliable information about NVH-issues in early design phases to guarantee high quality standards. This requires the use of sophisticated simulation techniques, which allow for the virtual construction and testing of subsystems and/or the whole car in early development stages. The virtual, testing is very important especially with respect to alternative drive concepts(hybrid cars, electric cars, hydrogen fuel cell cars), where complete new NVH-problems and challenges occur which have to be adequately managed right from the beginning. In this context, it is important to mention that the challenge is that all noise contributions from different sources lead to a harmonious, well-balanced overall sound. The optimization of single sources alone does not automatically result in an ideal overall vehicle sound. The paper highlights modern and innovative NVH measurement technologies as well as presents solutions of recent NVH tasks and challenges. Furthermore, future prospects and developments in the field of automotive acoustics are considered and discussed.

  • PDF

Large eddy simulation of a steady hydraulic jump at Fr = 7.3 (Fr = 7.3의 정상도수 큰와모의)

  • Paik, Joongcheol;Kim, Byungjoo
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.spc1
    • /
    • pp.1049-1058
    • /
    • 2023
  • The flow passing through river-crossing structures such as weirs and low-fall dams is dominated by rapidly varied flow including hydraulic jump. The intense unsteadiness of flow velocity and free surface profile affects the stability of such hydraulic structures. In particular, the steady hydraulic jump generated at high Froude number conditions includes remarkably air entrainment, making the flow characteristics more complicated. In this study, a large-eddy simulation was performed for turbulence effect and the hybrid VoF technique to simulate the steady hydraulic jump at the Froude number of 7.3 and the Reynolds number of 15,700. The results of the numerical simulation showed that the instantaneous maximum pressure and time-average pressure distribution calculated on the bottom surface downstream of the structure could be reasonably well reproduced being in good agreement with the experimental values. However, the instantaneous minimum pressure distribution in the direct downstream of the structure shows the opposite pattern to the target experimental measurement value. However, the numerical simulation performed in this study is considered to reasonably predict the minimum pressure distributions observed in various experiments conducted at similar conditions. The vertical distributions of flow velocity and air concentration computed in the center of the hydraulic jump were found to be in good agreement with the experimental results measured under similar conditions, showing self-similarity. These results show that the large eddy simulation and hybrid VoF techniques applied in this study can reproduce the hydraulic jump with strong air entrainment and the resulting intense free surface and pressure fluctuations at high Froude number conditions.

Efficient Algorithms for Motion Parameter Estimation in Object-Oriented Analysis-Synthesis Coding (객체지향 분석-함성 부호화를 위한 효율적 움직임 파라미터 추정 알고리듬)

  • Lee Chang Bum;Park Rae-Hong
    • The KIPS Transactions:PartB
    • /
    • v.11B no.6
    • /
    • pp.653-660
    • /
    • 2004
  • Object-oriented analysis-synthesis coding (OOASC) subdivides each image of a sequence into a number of moving objects and estimates and compensates the motion of each object. It employs a motion parameter technique for estimating motion information of each object. The motion parameter technique employing gradient operators requires a high computational load. The main objective of this paper is to present efficient motion parameter estimation techniques using the hierarchical structure in object-oriented analysis-synthesis coding. In order to achieve this goal, this paper proposes two algorithms : hybrid motion parameter estimation method (HMPEM) and adaptive motion parameter estimation method (AMPEM) using the hierarchical structure. HMPEM uses the proposed hierarchical structure, in which six or eight motion parameters are estimated by a parameter verification process in a low-resolution image, whose size is equal to one fourth of that of an original image. AMPEM uses the same hierarchical structure with the motion detection criterion that measures the amount of motion based on the temporal co-occurrence matrices for adaptive estimation of the motion parameters. This method is fast and easily implemented using parallel processing techniques. Theoretical analysis and computer simulation show that the peak signal to noise ratio (PSNR) of the image reconstructed by the proposed method lies between those of images reconstructed by the conventional 6- and 8-parameter estimation methods with a greatly reduced computational load by a factor of about four.

Computational estimation of the earthquake response for fibre reinforced concrete rectangular columns

  • Liu, Chanjuan;Wu, Xinling;Wakil, Karzan;Jermsittiparsert, Kittisak;Ho, Lanh Si;Alabduljabbar, Hisham;Alaskar, Abdulaziz;Alrshoudi, Fahed;Alyousef, Rayed;Mohamed, Abdeliazim Mustafa
    • Steel and Composite Structures
    • /
    • v.34 no.5
    • /
    • pp.743-767
    • /
    • 2020
  • Due to the impressive flexural performance, enhanced compressive strength and more constrained crack propagation, Fibre-reinforced concrete (FRC) have been widely employed in the construction application. Majority of experimental studies have focused on the seismic behavior of FRC columns. Based on the valid experimental data obtained from the previous studies, the current study has evaluated the seismic response and compressive strength of FRC rectangular columns while following hybrid metaheuristic techniques. Due to the non-linearity of seismic data, Adaptive neuro-fuzzy inference system (ANFIS) has been incorporated with metaheuristic algorithms. 317 different datasets from FRC column tests has been applied as one database in order to determine the most influential factor on the ultimate strengths of FRC rectangular columns subjected to the simulated seismic loading. ANFIS has been used with the incorporation of Particle Swarm Optimization (PSO) and Genetic algorithm (GA). For the analysis of the attained results, Extreme learning machine (ELM) as an authentic prediction method has been concurrently used. The variable selection procedure is to choose the most dominant parameters affecting the ultimate strengths of FRC rectangular columns subjected to simulated seismic loading. Accordingly, the results have shown that ANFIS-PSO has successfully predicted the seismic lateral load with R2 = 0.857 and 0.902 for the test and train phase, respectively, nominated as the lateral load prediction estimator. On the other hand, in case of compressive strength prediction, ELM is to predict the compressive strength with R2 = 0.657 and 0.862 for test and train phase, respectively. The results have shown that the seismic lateral force trend is more predictable than the compressive strength of FRC rectangular columns, in which the best results belong to the lateral force prediction. Compressive strength prediction has illustrated a significant deviation above 40 Mpa which could be related to the considerable non-linearity and possible empirical shortcomings. Finally, employing ANFIS-GA and ANFIS-PSO techniques to evaluate the seismic response of FRC are a promising reliable approach to be replaced for high cost and time-consuming experimental tests.

Visualization of Flow in a Transonic Centrifugal Compressor

  • Hayami Hiroshi
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.1-6
    • /
    • 2002
  • How is the flow in a rotating impeller. About 35 years have passed since one experimentalist rotating with the impeller. of a huge centrifugal blower made the flow measurements using a hot-wire anemometer (Fowler 1968). Optical measurement methods have great advantages over the intrusive methods especially for the flow measurement in a rotating impeller. One is the optical flow visualization (FV) technique (Senoo, et al., 1968) and the other is the application of laser velocimetry (LV) (Hah and Krain, 1990). Particle image velocimetries (PIVs) combine major features of both FV and LV, and are very attractive due to the feasibility of simultaneous and multi-points measurements (Hayami and Aramaki, 1999). A high-pressure-ratio transonic centrifugal compressor with a low-solidity cascade diffuser was tested in a closed loop with HFC134a gas at 18,000rpm (Hayami, 2000). Two kinds of measurement techniques by image processing were applied to visualize a flow in the compressor. One is a velocity field measurement at the inducer of the impeller using a PIV and the other is a pressure field measurement on the side wall of the cascade diffuser using a pressure sensitive paint (PSP) measurement technique. The PIV was successfully applied for visualization of an unsteady behavior of a shock wave based on the instantaneous velocity field measurement (Hayami, et al., 2002b) as well as a phase-averaged velocity vector field with a shock wave over one blade pitch (Hayami, et al., 2002a. b). A violent change in pressure was successfully visualized using a PSP measurement during a surge condition even though there are still some problems to be overcome (Hayami, et al., 2002c). Both PIV and PSP results are discussed in comparison with those of laser-2-focus (L2F) velocimetry and those of semiconductor pressure sensors. Experimental fluid dynamics (EFDs) are still growing up more and more both in hardware and in software. On the other hand, computational fluid dynamics (CFDs) are very attractive to understand the details of flow. A secondary flow on the side wall of the cascade diffuser was visualized based either steady or unsteady CFD calculations (Bonaiuti, et al.,2002). EFD and CFD methods will be combined to a hybrid method being complementary to each other. Measurement techniques by image processing as well as CFD calculations give a huge amount of data. Then, data mining technique will become more important to understand the flow mechanism both for EFD and CFD.

  • PDF