Abstract
Object-oriented analysis-synthesis coding (OOASC) subdivides each image of a sequence into a number of moving objects and estimates and compensates the motion of each object. It employs a motion parameter technique for estimating motion information of each object. The motion parameter technique employing gradient operators requires a high computational load. The main objective of this paper is to present efficient motion parameter estimation techniques using the hierarchical structure in object-oriented analysis-synthesis coding. In order to achieve this goal, this paper proposes two algorithms : hybrid motion parameter estimation method (HMPEM) and adaptive motion parameter estimation method (AMPEM) using the hierarchical structure. HMPEM uses the proposed hierarchical structure, in which six or eight motion parameters are estimated by a parameter verification process in a low-resolution image, whose size is equal to one fourth of that of an original image. AMPEM uses the same hierarchical structure with the motion detection criterion that measures the amount of motion based on the temporal co-occurrence matrices for adaptive estimation of the motion parameters. This method is fast and easily implemented using parallel processing techniques. Theoretical analysis and computer simulation show that the peak signal to noise ratio (PSNR) of the image reconstructed by the proposed method lies between those of images reconstructed by the conventional 6- and 8-parameter estimation methods with a greatly reduced computational load by a factor of about four.
객체지향 분석-합성 부호화는 일련의 영상들을 여러 개의 동 객체로 분할한 후 각 객체의 움직임을 추정하고 보상한다. 그것은 각 객체에 있는 움직임 정보를 추정하기 위해 변환 파라미터 기법을 적용하는데 이때 변환 파라미터 기법은 그레디언트 연산자를 사용하기 때문에 매우 복잡한 계산이 요구된다. 본 논문의 목적은 객체지향 분석-합성 부호화에서 계층적 구조를 사용한 효율적인 변환파라미터 기법을 개발하는 것이다. 이러한 목표를 달성하기 위해 본 논문은 계층적 구조를 사용한 하이브리드 변환파라미터 추정 방법과 적응형 변환 파라미터 방법의 두 가지 알고리듬을 제안한다. 전자는 파라미터 검증 방법을 사용하는데 원 영상을 1/4로 축소한 저해상도 영상에서 파라미터 검증 처리 방법에 의해 6-파라미터 또는 8-파라미터로 추정한다. 후자는 동일한 계층적 방법을 적용한 다음 변환 파라미터를 적응적으로 추정하기 위해 temporal co-occurrence 행렬에 기반 한 움직임 량을 측정하는 움직임 판단기준을 사용한다. 이러한 방법은 고속이며, 병렬처리 기법을 사용할 경우 쉽게 하드웨어로 구현할 수 있는 이점이 있다. 이론 분석 및 모의시험 결과 제안한 방법이 기존 방법에 비해 약 1/4 정도로 월등한 계산량 감축을 얻을 수 있었으며, 아울러 제안한 방법들에 의해 복원된 신호대 잡음비는 6-파라미터와 8-파라미터 추정 방법에 의해 복원된 결과들 사이에 있음을 보여 준다.