DOI QR코드

DOI QR Code

An Off-line Signature Verification Using PCA and LDA

PCA와 LDA를 이용한 오프라인 서면 검증

  • 류상연 (에이엘티-세미콘㈜) ;
  • 이대종 (충북대학교 컴퓨터정보통신연구소) ;
  • 고현주 (충북대학교 대학원 제어계측공학과) ;
  • 전명근 (충북대학교 전기전자 컴퓨터공학부)
  • Published : 2004.10.01

Abstract

Among the biometrics, signature shows more larger variation than the other biometrics such as fingerprint and iris. In order to overcome this problem, we propose a robust offline signature verification method based on PCA and LDA. Signature is projected to vertical and horizontal axes by new grid partition method. And then feature extraction and decision is performed by PCA and LDA. Experimental results show that the proposed offline signature verification has lower False Reject Rate(FRR) and False Acceptance Rate(FAR) which are 1.45% and 2.1%, respectively.

생체 특징 중에서 서명은 취득 시마다 환경이나 감정변화에 따라 동일인이라 하더라도 서명간에 변이가 존재하며 그 변이특성이 지문과 홍채와 같은 다른 생체 특징보다 크게 나타난다. 따라서, 본 논문에서는 주성분분석기법과 선형판별기법을 이용하여 서명 변이에도 강인한 서명 검증 기법을 제안한다. 제안한 방법은 서명 변화에 대한 영향을 최소화하기 위해 서명을 새로운 격자분할 방식에 의해 수직축과 수평축으로 투영시켰다. 투영된 서명은 주성분분석(PCA) 기법과 선형판별분석(LDA) 기법을 이용하여 각각의 서명에 대한 특징을 산출한 후 서명검증을 하였다. 제안된 서명검증 알고리즘의 타당성을 검토하기 위해 실험한 결과, 오거부율이 약 1.45%일 때 오인식률이 2.1% 결과를 보였다.

Keywords

References

  1. Pavlidis I., Mavuduru R., Papanikolopoulos N., 'Off-line Recognition of Signatures Using Revolving Active Deformable Models,' IEEE Conf., Humans, Information and Technology, Vol.1, pp.771-776, 1994 https://doi.org/10.1109/ICSMC.1994.399980
  2. Kaewkongka T., Chamnongthai K, Thipakorn, B., 'Off-line Signature Recognition Using Parameterized Hough Transform,' Proceedings of the Fifth International Symposium, ISSPA'99., Signal Processing and Its Applications, Vol.1, pp.451-454, 1999 https://doi.org/10.1109/ISSPA.1999.818209
  3. Rigoll G., Kosmala A., 'A Systematic Comparison Between On-line and Off-line Methods for Signature Verification with Hidden Markov Models,' 14th International Conference on Pattern Recognition, Vol. II, Australia, pp.1755-1757, 1998 https://doi.org/10.1109/ICPR.1998.712066
  4. Sabourin R., Genest G., 'An Extended-shadow-code Based Approach for Off-line Signature Verification: Part-I-Evaluation of the Var Mask Definition,' 12th IAPR International, Conference on Pattern Recognition, Vol.2, pp. 450-453, 1994 https://doi.org/10.1109/ICPR.1994.576979
  5. R. Sabourin, G. Genest and F. J Preteux.: OffLine Signature Verification by Local Granulometric Size Distributions. IEEE Trans. Pattern Analysis & Machine Intelligence, vol. 19, No.9. (1997) 976-988 https://doi.org/10.1109/34.615447
  6. Papamarkos, N., Baltzakis, H., 'Off-line signature verification using multiple neural network classification structures,' Digital Signal Processing Proceedings, 13th International Conference on, Vol.2, pp.727-730, 1997 https://doi.org/10.1109/ICDSP.1997.628455
  7. Pottier, I., Burel, G., 'Identification and authentification of handwritten signatures with a connectionist approach,' Neural Networks, IEEE International Conference on , Vol. 5, pp.2948-2951, 1994 https://doi.org/10.1109/ICNN.1994.374701
  8. Turk M., Pentland A, 'Face recognition using eigenfaces,' Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pp.586-591, 1991 https://doi.org/10.1109/CVPR.1991.139758
  9. Belhumeur P. N., Hespanha J. P., Kriegmaqn D. J., 'Eigenfaces vs. Fisherfaces : recognition using class specific Linear Projection,' IEEE Trans. on Pattern Analysis and Machine Intell., Vol.19, No.7, pp.711-720, 1997 https://doi.org/10.1109/34.598228
  10. Richard O. D., Peter E. H., David G. S., Pattern Classification, JOHN WILEY &SONS, INC. Second Edition, 2002
  11. Liu X., Chen T., Kumar B. V. K. V., 'On Modeling Variations for Face Authentication,' Fifth IEEE International Conference on Automatic Face and Gesture Recognition, pp.369-374, 2002 https://doi.org/10.1109/AFGR.2002.1004184
  12. Kim H. C., Kim D. J., Bang S. Y, 'Extensions of LDA by PCA Mixture Model and Class-wise Features,' Pattern Recognition, Vol.36, pp.1095-1105, 2003 https://doi.org/10.1016/S0031-3203(02)00163-2
  13. Zhang B., Fu M., Yan H., 'A Nonlinear Neural Network Model of Mixture of Local Principal Component Analysis : Application to Handwritten Digits Recognition,' Pattern Recognition, Vol.34, Issue 2, pp.203-214, 2001 https://doi.org/10.1016/S0031-3203(00)00009-1
  14. Said H. E. S., T. N. T., Baker K. D., 'Personal Identification Based on and writing,' Pattern Recognition, Vol.33, Issue 1, pp.149-160, 2000 https://doi.org/10.1016/S0031-3203(99)00006-0