Collaborative filtering is a technique used to predict whether a particular user will like a particular item. User-based or item-based collaborative techniques have been used extensively in many commercial recommender systems. In this paper, a hybrid collaborative filtering method that combines user-based and item-based methods using a low-dimensional linear model is proposed. The proposed method solves the problems of sparsity and a large database by using NMF among the low-dimensional linear models. In collaborative filtering systems the methods using the NMF are useful in expressing users as semantic relations. However, they are model-based methods and the process of computation is complex, so they can not recommend items dynamically. In order to complement the shortcomings, the proposed method clusters users into groups by using NMF and selects features of groups by using TF-IDF. Mutual information is then used to compute similarities between items. The proposed method clusters users into groups and extracts features of groups on offline and determines the most suitable group for an active user using the features of groups on online. Finally, the proposed method reduces the time required to classify an active user into a group and outperforms previous methods by combining user-based and item-based collaborative filtering methods.
Collaborative Filtering is one of the most used recommender systems. However, basically it cannot be used to recommend new products to customers because it finds products only based on the purchasing history of each customer. In order to cope with this shortcoming, many researchers have proposed the hybrid recommender system, which is a combination of collaborative filtering and content-based filtering. Content-based filtering recommends the products whose attributes are similar to those of the products that the target customers prefer. However, the hybrid method is used only for the limited categories of products such as music and movie, which are the products whose attributes are easily extracted. Therefore it is essential to find a more effective approach to recommend to customers new products in any category. In this study, we propose a new recommendation method which applies centrality concept widely used to analyze the relational and structural characteristics in social network analysis. The new products are recommended to the customers who are highly likely to buy the products, based on the analysis of the relationships among products by using centrality. The recommendation process consists of following four steps; purchase similarity analysis, product network construction, centrality analysis, and new product recommendation. In order to evaluate the performance of this proposed method, sales data from H department store, one of the well.known department stores in Korea, is used.
Kim, Su Jin;Yoon, Ik Koo;Nam, Eun Young;Gwon, Jung Hyun;Kim, Sung Jong;Chung, Kyeong Ho;Jun, Ji Hye;Yun, Seok Kyu
Korean Journal of Plant Resources
/
v.30
no.5
/
pp.565-570
/
2017
In a plumcot 'Harmony' cultivar, which is an interspecific hybrid between plum and apricot, canopy occupation and productivity according to tree training system, Y shape with no trellis (YNT) and Y-palmette with trellis (YPT), were compared. According to the survey results for 5 years of planting, tree growth was similar in two training systems. However, canopy occupation and fruit yield of YPT were significantly higher than those of YNT. The fruit weight and sugar content were not significantly different between two systems. The fruit drop rate tended to be lower in YPT than in YNT. From the above results, it is expected that the YPT type will contribute to the increase of canopy occupation and fruit yield and reducing the fruit drop rate compared to the YNT.
Journal of the Korean Institute of Intelligent Systems
/
v.24
no.2
/
pp.173-178
/
2014
In this study, we introduce ASM-based face recognition classifier and its design methodology with the aid of 2-dimensional 2-directional hybird preprocessing algorithm. Since the image of face recognition is easily affected by external environments, ASM(active shape model) as image preprocessing algorithm is used to resolve such problem. In particular, ASM is used widely for the purpose of feature extraction for human face. After extracting face image area by using ASM, the dimensionality of the extracted face image data is reduced by using $(2D)^2$hybrid preprocessing algorithm based on LDA and PCA. Face image data through preprocessing algorithm is used as input data for the design of the proposed polynomials based radial basis function neural network. Unlike as the case in existing neural networks, the proposed pattern classifier has the characteristics of a robust neural network and it is also superior from the view point of predictive ability as well as ability to resolve the problem of multi-dimensionality. The essential design parameters (the number of row eigenvectors, column eigenvectors, and clusters, and fuzzification coefficient) of the classifier are optimized by means of ABC(artificial bee colony) algorithm. The performance of the proposed classifier is quantified through yale and AT&T dataset widely used in the face recognition.
We made 8 wt% silica dispersion system with fumed silica and photo curable acrylic monomer by beads mill process. These dispersions could be applied in organic/inorganic hybrid coating systems. These dispersions could be applied in organic/inorganic hybrid coating systems. The 4 species of photo curable acrylic monomer which was presence of hydroxyl group, different solubility parameter, and different molecular size were used in the silica dispersions. Stability of polar solvent, isopropyl alcohol, in silica dispersions was investigated. We investigated the stability of silica dispersions by using steady-state and dynamic rheology. As the monomer has hydroxyl group increased in mono and binary monomer silica dispersions, they showed non flocculated stable sol (loss modulus (G")> storage modulus (G')). When polar solvent IPA was added into slightly flocculated silica dispersions, they changed to non flocculated stable sol.
Journal of Korea Society of Industrial Information Systems
/
v.19
no.5
/
pp.81-90
/
2014
It is an element certainly required for the cost reduction of a company that forward and reverse logistics chain are unified and constitutes a resource closed-loop supply chain (CLSC). In this study, the inventory control which unifies inventory of distribution centers (DCs) of forward logistics and processing center of reverse logistics in the CLSC environment is proposed. The inventory system model for newly-constructed CLSC considers the JIT(Just-In-Time) delivery from the processing center to the manufacturer, including the making of decisions on whether to wait for the arrival of end-of-life products or to back-order necessary products for manufacturer when the supply of end-of-life products at the processing center via the returning center is insufficient for the demands of the manufacturers. The validity of the proposed model was verified using the genetic algorithm (GA). In order that a parameter might investigate the effect which it has on a solution, the simulation was carried out for priGA(priority-based GA) on three kinds of parameter conditions. Moreover, mhGA(modified hybrid GA) to which a parameter is adjusted for every Study on Reducing Logistics Costs and Inventory Control System according to facilities integration in the Closed-Loop Supply Chain Environment generation, the simulation was carried out to a four-kind numerical example.
Scholarly information has increased tremendously according to the development of IT, especially the Internet. However, simultaneously, people have to spend more time and exert more effort because of information overload. There have been many research efforts in the field of expert systems, data mining, and information retrieval, concerning a system that recommends user-expected information items through presumption. Recently, the hybrid system combining a content-based recommendation system and collaborative filtering or combining recommendation systems in other domains has been developed. In this paper we resolved the problem of the current recommendation system and suggested a new system combining collaborative filtering and Naive Bayes Classification. In this way, we resolved the over-specialization problem through collaborative filtering and lack of assessment information or recommendation of new contents through Naive Bayes Classification. For verification, we applied the new model in NDSL's paper service of KISTI, especially papers from journals about Sitology and Electronics, and witnessed high satisfaction from 4 experimental participants.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.20
no.5
/
pp.100-112
/
2021
With the advent of big data, traffic prediction has been developed based on historical data analysis methods, but this method deteriorates prediction performance when a traffic incident that has not been observed occurs. This study proposes a method that can compensate for the reduction in traffic prediction accuracy in traffic incidents situations by hybrid approach of machine learning and traffic simulation. The blind spots of the data-driven method are revealed when data patterns that have not been observed in the past are recognized. In this study, we tried to solve the problem by reinforcing historical data using traffic simulation. The proposed method performs machine learning-based traffic prediction and periodically compares the prediction result with real time traffic data to determine whether an incident occurs. When an incident is recognized, prediction is performed using the synthetic traffic data generated through simulation. The method proposed in this study was tested on an actual road section, and as a result of the experiment, it was confirmed that the error in predicting traffic state in incident situations was significantly reduced. The proposed traffic prediction method is expected to become a cornerstone for the advancement of traffic prediction.
Journal of the Korea Academia-Industrial cooperation Society
/
v.19
no.11
/
pp.695-700
/
2018
This paper presents the development of compact and lightweight broadband power amplifier module using HMIC (Hybrid Microwave Integrated Circuit) technology that could be high-density integration for many non-packaged microwave components into the small area of a high dielectric constant printed circuit board, such as a ceramic substrate, also using the special design and fabrication schemes for the structure of minimized electromagnetic interference to obtain the homogeneous electrical performance at the wideband frequency. The results confirmed that the small signal gain has a gain flatness of ${\pm}1.5dB$ within the range of 32 to 36 dB. In addition, the output power satisfied more than 30 dBm. The noise figure was measured within 7 dB, and OIP3 (Output Third Order Intercept Point) was more than 39 dBm. The fabricated broadband power amplifier satisfied the target specification required to electrically drive the high power amplifiers of jamming generators for electronic warfare, so the actual applicability to the system was verified. Future studies will be aimed at designing other similar microwave power amplifiers in the future.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.12
no.2
/
pp.127-134
/
2019
With the advancement of IT technology, the amount of data generated has been growing exponentially every year. As an alternative to this, research on distributed systems and in-memory based big data processing schemes has been actively underway. The processing power of traditional big data processing schemes enables big data to be processed as fast as the number of nodes and memory capacity increases. However, the increase in the number of nodes inevitably raises the frequency of failures in a big data infrastructure environment, and infrastructure management points and infrastructure operating costs also increase accordingly. In addition, the increase in memory capacity raises infrastructure costs for a node configuration. Therefore, this paper proposes an in-memory-based hybrid big data processing scheme for improve the big data processing rate. The proposed scheme reduces the number of nodes compared to traditional big data processing schemes based on distributed systems by adding a combiner step to a distributed system processing scheme and applying an in-memory based processing technology at that step. It decreases the big data processing time by approximately 22%. In the future, realistic performance evaluation in a big data infrastructure environment consisting of more nodes will be required for practical verification of the proposed scheme.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.