• Title/Summary/Keyword: hybrid surface

Search Result 1,259, Processing Time 0.031 seconds

Numerical Study on Couette Flow in Nanostructured Channel using Molecular-continuum Hybrid Method (분자-연속체 하이브리드 기법을 이용한 구조물이 있는 나노 채널에서의 쿠에트 유동에 대한 수치적 연구)

  • Kim, Youngjin;Jeong, Myunggeun;Ha, Man Yeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.6
    • /
    • pp.429-434
    • /
    • 2017
  • A molecular-continuum hybrid method was developed to simulate microscale and nanoscale fluids where continuum fluidics cannot be used to predict Couette flow. Molecular dynamics simulation is used near the solid surface where the flow cannot be predicted by continuum fluidics, and Navier-Stokes equations are used in the other regions. Numerical simulation of Couette flow was performed using the hybrid method to investigate the effect of solid-liquid interaction and surface roughness in a nanochannel. It was found that the solid-liquid interaction and surface roughness influence the boundary condition. When the surface energy is low, slippage occurs near the solid surface, and the magnitude of slippage decreases with increase in surface energy. When the surface energy is high, a locking boundary condition is formed. The roughness disturbs slippage near the solid surface and promotes the locking boundary condition.

3D Surface Approximation to Serial 2D Cross Sections (단면정보로부터 3차원 근사곡면의 생성)

  • 박형준;김광수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.719-724
    • /
    • 1994
  • This paper describes a hybrid surface-based method for smooth 3D surface approximation to a sequence of 2D cross sections. The resulting surface is a hybrid G $^{1}$ surface represented by a mesh of triangular and rectangular Bezier patches defined on skinning, branching, or capping regions. Each skinning region is approximated with a closed B_spline surface, which is transformed into a mesh of Bezier patches. Triangular G $^{1}$ surfaces are constructed over brabching and capping regions such that the transitions between each capping regions such that the transitions between each triangular surface and its neighboring skinning surfaces are G $^{1}$ continuous. Since each skinning region is represented by an approximated rectangular C $^{2}$ suface instead of an interpolated trctangular G $^{[-1000]}$ surface, the proposed method can provide more smooth surfaces and realize more efficient data reduction than triangular surfacebased method.

  • PDF

Influence of modeling agents on the surface properties of an esthetic nano-hybrid composite

  • Kutuk, Zeynep Bilge;Erden, Ecem;Aksahin, Damla Lara;Durak, Zeynep Elif;Dulda, Alp Can
    • Restorative Dentistry and Endodontics
    • /
    • v.45 no.2
    • /
    • pp.13.1-13.10
    • /
    • 2020
  • Objective: The aim of this study was to evaluate the influence of different modeling agents on the surface microhardness (Vickers hardness number; VHN), roughness (Ra), and color change (ΔE) of a nano-hybrid composite with or without exposure to discoloration by coffee. Materials and Methods: Sixty-four cylinder-shaped nano-hybrid composite specimens were prepared using a Teflon mold. The specimens' surfaces were prepared according to the following groups: group 1, no modeling agent; group 2, Modeling Liquid; group 3, a universal adhesive (G-Premio Bond); and group 4, the first step of a 2-step self-adhesive system (OptiBond XTR). Specimens were randomly allocated into 2 groups (n = 8) according to the storage medium (distilled water or coffee). VHN, Ra, and ΔE were measured at 24 hours, 1 week, and 6 weeks. The Kruskal-Wallis test followed by the Bonferroni correction for pairwise comparisons was used for statistical analysis (α = 0.05). Results: Storage time did not influence the VHN of the nano-hybrid composite in any group (p > 0.05). OptiBond XTR Primer application affected the VHN negatively in all investigated storage medium and time conditions (p < 0.05). Modeling Liquid application yielded improved Ra values for the specimens stored in coffee at each time point (p < 0.05). Modeling Liquid application was associated with the lowest ΔE values in all investigated storage medium and time conditions (p < 0.05). Conclusion: Different types of modeling agents could affect the surface properties and discoloration of nano-hybrid composites.

Synthesis and Photocatalytic Properties of Thermally Stable Metal-Oxide Hybrid Nanocatalyst with Ultrathin Oxide Encapsulation

  • Naik, Brundabana;Moon, Song Yi;Kim, Sun Mi;Jung, Chan Ho;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.317.2-317.2
    • /
    • 2013
  • Ultrathin oxide encapsulated metal-oxide hybrid nanocatalysts have been fabricated by a soft chemical and facile route. First, SiO2 nanoparticles of 25~30 nm size have been synthesized by modified Stobber's method followed by amine functionalization. Metal nanoparticles (Ru, Rh, Pt) capped with polymer/citrate have been deposited on functionalized SiO2 and finally an ultrathin layer of TiO2 coated on surface which prevents sintering and provides high thermal stability while maximizing the metal-oxide interface for higher catalytic activity. TEM studies confirmed that 2.5 nm sized metal nanoparticles are well dispersed and distributed throughout the surface of 25 nm SiO2 nanoparticles with a 3-4 nm TiO2 ultrathin layer. The metal nanoparticles are still well exposed to outer surface, being enabled for surface characterization and catalytic activity. Even after calcination at $600^{\circ}C$, the structure and morphology of hybrid nanocatalysts remain intact confirm the high thermal stability. XPS spectra of hybrid nanocatalyst suggest the metallic states as well as their corresponding oxide states. The catalytic activity has been evaluated for high temperature CO oxidation reaction as well as photocatalytic H2 generation under solar simulation. The design of hybrid structure, high thermal stability, and better exposure of metal active sites are the key parameters for the high catalytic activity. The maximization of metal-TiO2 interface interaction has the great role in photocatalytic H2 production.

  • PDF

EFFECT OF DIFFERENT STERILIZATION METHODS ON THE SURFACE MORPHOLOGY OF PPDO-hybrid-PLGA NANOFIBER SCAFFOLD AND ATTACHMENTS OF PC12 CELL (다양한 소독방법이 PPDO-hybrid-PLGA nanofiber scaffold의 형태와 세포부착에 미치는 영향에 관한 연구)

  • Lee, Ju-Hyon;Min, Hyun-Gi;Jung, Ju-Young;Kang, Na-Ra
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.34 no.6
    • /
    • pp.635-639
    • /
    • 2008
  • Objectives : the effect of different sterilization methods on the surface morphology of PPDO-hybrid-PLGA nanofiber scaffold and attachments of PC12 cell were investigated. Methods : Poly (p-dioxone)-hybrid-Poly (lactide-glycolide) (PPDO-hybrid-PLGA) nanofiber scaffold, fabricated in a tube form with 1.5 mm internal diameter, 0.2 mm thickness and 5 mm length, was prepared using electrospinning method. To study the surface morphology using SEM, The study group and control group in respective were; Control:Non-sterilized scaffold, Group I:scaffold sterilized with 70% Alcohol, Group II: scaffold sterilized with Ethylene Oxide at $65^{\circ}C$, and Group III: scaffold sterilized with Ethylene Oxide at $37^{\circ}C$. To investigate viability of the PC12 cell on the scaffold, The study group and control group in respective were; Control: sterilized with 70% Alcohol, Group I: sterilized with Ethylene Oxide at $65^{\circ}C$, and Group II: sterilized with Ethylene Oxide at $37^{\circ}C$. Results : 1. The surface morphology was slightly changed in Group I, II and Group III, compared with control. 2. The attachment of PC12 cells in Group I, II was not higher than in control Discussion : The attachment of PC12 cell is not influenced by different sterilization methods.

Study on the Characteristics of the Hybrid Parylene Thin Films (하이브리드 타입 패럴린의 박막 특성 연구)

  • Cha, Gook-Chan;Lee, Ji-Yeon;Jung, Seong-Hee;Song, Jeom-Sik;Lee, Suk-Min
    • Elastomers and Composites
    • /
    • v.45 no.4
    • /
    • pp.298-308
    • /
    • 2010
  • The mechanical properties and surface characteristics of parylene thin film were improved using Xylydene-based dimers (DPX-C, DPX-D, and DPX-N). A single-parylene-C, D, N film and a hybrid chemical and physical parylene thin films in which two types are mixed were manufactured for each dimer by adjusting the deposition conditions and the thickness of the thin film by input. Parylene was deposited by chemical vapor deposition (CVD) and the thermal characteristics of the single thin film and the hybrid thin film were compared by thermal analysis. The mechanical properties of the thin films were characterized by tensile strength, elongation, and tear force tests, and the surface characteristics of the thin films were evaluated by contact angle and surface energy measurements. The hybrid chemical parylene thin film in which two types are mixed can complement the strengths and weaknesses of the different dimers, while the physical parylene thin film can freely adjust the thin film characteristics of the coated surface and the opposite surface.

Enhanced pH Response of Solution-gated Graphene FET by Using Vertically Grown ZnO Nanorods on Graphene Channel

  • Kim, B.Y;Jang, M.;Shin, K.-S.;Sohn, I.Y;Kim, S.-W.;Lee, N.-E
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.434.2-434.2
    • /
    • 2014
  • We observe enhanced pH response of solution-gated field-effect transistors (SG-FET) having 1D-2D hybrid channel of vertical grown ZnO nanorods grown on CVD graphene (Gr). In recent years, SG-FET based on Gr has received a lot of attention for biochemical sensing applications, because Gr has outstanding properties such as high sensitivity, low detection limit, label-free electrical detection, and so on. However, low-defect CVD Gr has hardly pH responsive due to lack of hydroxyl group on Gr surface. On the other hand, ZnO, consists of stable wurtzite structure, has attracted much interest due to its unique properties and wide range of applications in optoelectronics, biosensors, medical sciences, etc. Especially, ZnO were easily grown as vertical nanorods by hydrothermal method and ZnO nanostructures have higher sensitivity to environments than planar structures due to plentiful hydroxyl group on their surface. We prepared for ZnO nanorods vertically grown on CVD Gr (ZnO nanorods/Gr hybrid channel) and to fabricate SG-FET subsequently. We have analyzed hybrid channel FETs showing transfer characteristics similar to that of pristine Gr FETs and charge neutrality point (CNP) shifts along proton concentration in solution, which can determine pH level of solution. Hybrid channel SG-FET sensors led to increase in pH sensitivity up to 500%, compared to pristine Gr SG-FET sensors. We confirmed plentiful hydroxyl groups on ZnO nanorod surface interact with protons in solution, which causes shifts of CNP. The morphology and electrical characteristics of hybrid channel SG-FET were characterized by FE-SEM and semiconductor parameter analyzer, respectively. Sensitivity and sensing mechanism of ZnO nanorods/Gr hybrid channel FET will be discussed in detail.

  • PDF

Characterization of Nanocomposite Ti-Si-N Films Prepared by a Hybrid Deposition System of A If and Sputtering Techniques (하이브리드 증착 시스템을 이용한 나노복합체 Ti-Si-N 박막의 특성 연구)

  • 윤순영;최성룡;이미혜;김광호
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.2
    • /
    • pp.122-127
    • /
    • 2003
  • Ti - Si - N hard films were deposited on SKD11 steel substrates by a hybrid deposition system, where TiN was deposited by AIP method while Si was incorporated by sputtering one. The microstructure of Ti-Si-N films was revealed to be a composite of TiN crystallites and amorphous Si3N4 by instrumental analyses. The highest hardness value of about 45 Gpa was obtained at the Si content of around 7.7 at.%. With increase of Si content, the size of TiN crystallites was reduced and their distribution was changed from aligned to randomly orientated states. Surface roughness of Ti-Si-N film also decreased with increase of Si content.

The Type and Development for Structure System with Non-rigid Member (대공간 연성 구조시스템의 종류와 발달과정)

  • Lee, Ju-Na;Park, Sun-Woo;Park, Chan-Soo
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.148-157
    • /
    • 2004
  • The structure systems with non-rigid member were classified by the composition type of line and surface members. As a result of the classification, there are 1-way cable structure, cable net and radial cable net structure in the line member system. And there are pneumatic structure and suspension membrane structure in surface member system. In addition, when the line and surface members are composed together, there is the hybrid membrane system which are divided into hanging type and supported type. In this paper, the Korean terms of structure systems with non-rigid member are recommended through this classification. In each the structure systems with non-rigid member, the examples were also investigated considering their historical developments. It present that the light weight structure system and the openness of space have pursued with the developments. So largely, cable net structure with membrane, membrane structure and hybrid structure have used in these days.

  • PDF

Shape recovery and extraction the reflection properties of hybrid reflectance surface(II) (혼성 반사면의 반사 특성 추출 및 형상 복구(II))

  • 김태은;최종수
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.6
    • /
    • pp.21-29
    • /
    • 1997
  • In this paper, we propose a new approach for recovering 3-D shape and extracting the reflectance properties of surface from intensity images. Photometric stereo method(PSM) is genrally based on the direct illumination. In this paper, the reflectance function is derived by interoduceing the indirect diffuse illumination in PSM and then applied to hybrid reflectance model which consists of two components; the lambertian and the specular reflectance. Under the hybrid reflectance model and the indirect diffuse illumination circumstance, the reflectance properties of sample surface can be extracting by normal sampler and then 3-D shape of an object can be recovered based on extracting reflectance properties. This method is rapid because of using the reference table and simplifies the restriction condition about the reflectance function existing in prior studies. Th erecovery efficiency in our method is better than that in prior studies. Also, this method is applied to various types of surfaces by defining general reflectance function.

  • PDF