EFFECT OF DIFFERENT STERILIZATION METHODS ON THE SURFACE MORPHOLOGY OF PPDO-hybrid-PLGA NANOFIBER SCAFFOLD AND ATTACHMENTS OF PC12 CELL

다양한 소독방법이 PPDO-hybrid-PLGA nanofiber scaffold의 형태와 세포부착에 미치는 영향에 관한 연구

  • Lee, Ju-Hyon (Ewha Womans University School of Medicine Department of Oral and Maxillofacial Surgery) ;
  • Min, Hyun-Gi (Ewha Womans University School of Medicine Department of Oral and Maxillofacial Surgery) ;
  • Jung, Ju-Young (Ewha Womans University Graduate School of Clinical Dentistry Department of lmplant Dentistry) ;
  • Kang, Na-Ra (Ewha Womans University School of Medicine Department of Oral and Maxillofacial Surgery)
  • 이주현 (이화여자대학교 의학전문대학 구강악안면외과) ;
  • 민현기 (이화여자대학교 의학전문대학 구강악안면외과) ;
  • 정주영 (이화여자대학교 임상치의학대학원 임플란트치의학과) ;
  • 강나라 (이화여자대학교 의학전문대학 구강악안면외과)
  • Published : 2008.12.31

Abstract

Objectives : the effect of different sterilization methods on the surface morphology of PPDO-hybrid-PLGA nanofiber scaffold and attachments of PC12 cell were investigated. Methods : Poly (p-dioxone)-hybrid-Poly (lactide-glycolide) (PPDO-hybrid-PLGA) nanofiber scaffold, fabricated in a tube form with 1.5 mm internal diameter, 0.2 mm thickness and 5 mm length, was prepared using electrospinning method. To study the surface morphology using SEM, The study group and control group in respective were; Control:Non-sterilized scaffold, Group I:scaffold sterilized with 70% Alcohol, Group II: scaffold sterilized with Ethylene Oxide at $65^{\circ}C$, and Group III: scaffold sterilized with Ethylene Oxide at $37^{\circ}C$. To investigate viability of the PC12 cell on the scaffold, The study group and control group in respective were; Control: sterilized with 70% Alcohol, Group I: sterilized with Ethylene Oxide at $65^{\circ}C$, and Group II: sterilized with Ethylene Oxide at $37^{\circ}C$. Results : 1. The surface morphology was slightly changed in Group I, II and Group III, compared with control. 2. The attachment of PC12 cells in Group I, II was not higher than in control Discussion : The attachment of PC12 cell is not influenced by different sterilization methods.

Keywords

References

  1. 김상헌, 김수현, 김영하. 조직공학용 다공성 스캐폴드. 고분자과학과 기술 2005;16(4):468-77
  2. Park TG. Degradation of poly(lactic-co-glycolic acid) microspheres: effect of copolymer composition. Biomaterials 1995;16(15):1123-30 https://doi.org/10.1016/0142-9612(95)93575-X
  3. Chia NK, Venkatraman SS, Boey FY, Cadart S, Loo JS. Controlled degradation of multilayered poly(lactide-co-glycolide) films using electron beam irradiation. J Biomed Mater Res A 2008;84(4):980-7
  4. Kang SW, Cho ER, Jeon O, Kim BS. The effect of microsphere degradation rate on the efficacy of polymeric microspheres as bulking agents: an 18-month follow-up study. J Biomed Mater Res B Appl Biomater 2007;80(1):253-9
  5. Wu L, Ding J. Effects of porosity and pore size on in vitro degradation of three-dimensional porous poly(D,L-lactide-co-glycolide) scaffolds for tissue engineering. J Biomed Mater Res A 2005;75(4):767-77
  6. Lu L, Garcia CA, Mikos AG. In vitro degradation of thin poly(DL-lactic-co-glycolic acid) films. J Biomed Mater Res 1999;46(2):236-44 https://doi.org/10.1002/(SICI)1097-4636(199908)46:2<236::AID-JBM13>3.0.CO;2-F
  7. Watzinger F, Wutzl A, Wanschitz F, Ewers R, Turhani D, Seemann R. Biodegradable polymer membrane used as septal splint. Int J Oral Maxillofac Surg 2008;37(5):473-7 https://doi.org/10.1016/j.ijom.2008.01.007
  8. Suuronen R. Biodegradable fracture-fixation devices in maxillofacial surgery. Int J Oral Maxillofac Surg 1993;22(1):50-7 https://doi.org/10.1016/S0901-5027(05)80358-3
  9. Kuzin MI, Adamian AA, Vinokurova TI. [Surgical absorbable suture materials]. Khirurgiia (Mosk) 1990(9):152-7
  10. Suuronen R, Kallela I, Lindqvist C. Bioabsorbable plates and screws: Current state of the art in facial fracture repair. J Craniomaxillofac Trauma 2000;6(1):19-27; discussion 28-30
  11. Owen GR, Jackson J, Chehroudi B, Burt H, Brunette DM. A PLGA membrane controlling cell behaviour for promoting tissue regeneration. Biomaterials 2005;26(35):7447-56 https://doi.org/10.1016/j.biomaterials.2005.05.055
  12. Murphy KG, Gunsolley JC. Guided tissue regeneration for the treatment of periodontal intrabony and furcation defects. A systematic review. Ann Periodontol 2003;8(1):266-302 https://doi.org/10.1902/annals.2003.8.1.266
  13. de Ruiter GC, Onyeneho IA, Liang ET, Moore MJ, Knight AM, Malessy MJ, et al. Methods for in vitro characterization of multichannel nerve tubes. J Biomed Mater Res A 2008;84(3):643-51
  14. Lleixa Calvet J, Grafahrend D, Klee D, Moller M. Sterilization effects on starPEG coated polymer surfaces: characterization and cell viability. J Mater Sci Mater Med 2008;19(4):1631-36 https://doi.org/10.1007/s10856-008-3381-x
  15. Montanari L CM, Signoretti EC, Valvo L, Santucci M, Bartolomei M, Fattibene P, Onori S, Faucitano A, Conti B, Genta I. Gamma irradiation effects on poly(DL-lactide-co-glycolide) microspheres. J Control Release 1998;56:219-29 https://doi.org/10.1016/S0168-3659(98)00082-0
  16. Sintzel MB S-AK, Mader K, Stosser R, Heller J, Tabatabay C, Gurny R. . Influence of irradiation sterilization on a semi-solid poly(ortho ester). Int J Pharm 1998(175):165-76
  17. Grayson AC, Cima MJ, Langer R. Size and temperature effects on poly(lactic-co-glycolic acid) degradation and microreservoir device performance. Biomaterials 2005;26(14):2137-45 https://doi.org/10.1016/j.biomaterials.2004.06.033
  18. Loo JS, Ooi CP, Boey FY. Degradation of poly(lactide-co-glycolide) (PLGA) and poly(L-lactide) (PLLA) by electron beam radiation. Biomaterials 2005;26(12):1359-67 https://doi.org/10.1016/j.biomaterials.2004.05.001
  19. Holy CE, Cheng C, Davies JE, Shoichet MS. Optimizing the sterilization of PLGA scaffolds for use in tissue engineering. Biomaterials 2001;22(1):25-31 https://doi.org/10.1016/S0142-9612(00)00136-8
  20. Moorer WR. Antiviral activity of alcohol for surface disinfection. Int J Dent Hyg 2003;1(3):138-42 https://doi.org/10.1034/j.1601-5037.2003.00032.x
  21. Gardener JF PM. Introduction to sterilization, disinfection and infection control. NY:Churchill Livingston; 1991
  22. Calis S, Bozdag S, Kas HS, Tuncay M, Hincal AA. Influence of irradiation sterilization on poly(lactide-co-glycolide) microspheres containing anti-inflammatory drugs. Farmaco 2002;57(1):55-62 https://doi.org/10.1016/S0014-827X(01)01171-5
  23. Carrascosa C, Espejo L, Torrado S, Torrado JJ. Effect of gammasterilization process on PLGA microspheres loaded with insulinlike growth factor-I (IGF-I). J Biomater Appl 2003;18(2):95-108 https://doi.org/10.1177/088532803038026
  24. Friess W, Schlapp M. Sterilization of gentamicin containing collagen/ PLGA microparticle composites. Eur J Pharm Biopharm 2006;63(2):176-87 https://doi.org/10.1016/j.ejpb.2005.11.007
  25. Shearer H, Ellis MJ, Perera SP, Chaudhuri JB. Effects of common sterilization methods on the structure and properties of poly(D,L lactic-co-glycolic acid) scaffolds. Tissue Eng 2006;12(10):2717-27 https://doi.org/10.1089/ten.2006.12.2717
  26. Yaman A. Alternative methods of terminal sterilization for biologically active macromolecules. Curr Opin Drug Discov Devel 2001;4(6):760-3
  27. Mendes GC, Brandao TR, Silva CL. Ethylene oxide sterilization of medical devices: a review. Am J Infect Control 2007;35(9):574-81 https://doi.org/10.1016/j.ajic.2006.10.014
  28. Pietrzak WS, Kumar M, Eppley BL. The influence of temperature on the degradation rate of LactoSorb copolymer. J Craniofac Surg 2003;14(2):176-83 https://doi.org/10.1097/00001665-200303000-00008
  29. Ernst RR, Shull JJ. Ethylene oxide gaseous sterilization. I. Concentration and temperature effects. Appl Microbiol 1962;10:337-41