• Title/Summary/Keyword: hybrid reliability

Search Result 412, Processing Time 0.023 seconds

Analysis of generalized progressive hybrid censored competing risks data

  • Lee, Kyeong-Jun;Lee, Jae-Ik;Park, Chan-Keun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.2
    • /
    • pp.131-137
    • /
    • 2016
  • In reliability analysis, it is quite common for the failure of any individual or item to be attributable to more than one cause. Moreover, observed data are often censored. Recently, progressive hybrid censoring schemes have become quite popular in life-testing problems and reliability analysis. However, a limitation of the progressive hybrid censoring scheme is that it cannot be applied when few failures occur before time T. Therefore, generalized progressive hybrid censoring schemes have been introduced. In this article, we derive the likelihood inference of the unknown parameters under the assumptions that the lifetime distributions of different causes are independent and exponentially distributed. We obtain the maximum likelihood estimators of the unknown parameters in exact forms. Asymptotic confidence intervals are also proposed. Bayes estimates and credible intervals of the unknown parameters are obtained under the assumption of gamma priors on the unknown parameters. Different methods are compared using Monte Carlo simulations. One real data set is analyzed for illustrative purposes.

Analysis of the Fuel Consumption and the Development of the Analysis Model of the Hybrid Tractor (하이브리드 트랙터의 해석모델 개발 및 연료 소비량 분석)

  • Kim, Dongmyung;Kim, Soochul;Lee, Sangheon;Kim, Yongjoo;Jnag, Joosup
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.3
    • /
    • pp.326-335
    • /
    • 2015
  • In this paper, is a study that analyzed the fuel consumption of hybrid tractor. Testing and analysis in order to evaluate the fuel consumption was performed. Analysis model was developed by using the SimulationX that is a commercial software. Also, map of the analysis model was modeled on the basis of test data. Test was performed using a dynamo device. The engine was tested the fuel consumption in accordance with the conditions on the load and throttle opening. The battery was tested the discharge and charge in accordance with the current amount. We verified the reliability of the analysis model by comparing the analysis results with the rest results. After considering the reliability of each analysis model was extended to the entire hybrid tractor system. To evaluate the efficiency using the analysis model, compared the fuel consumption of general tractor with hybrid tractor in the same load conditions.

Performance Analysis of Hydrogen Based Hybrid System Using HOMER - a Case Study in South Korea (수소기반 신재생에너지 복합발전 시스템의 지역별 운영성과 분석 - HOMER를 활용한 사례 연구)

  • LEE, MYOUNG-WON;SON, MINHEE;KIM, KYUNG NAM
    • Journal of Hydrogen and New Energy
    • /
    • v.29 no.6
    • /
    • pp.606-619
    • /
    • 2018
  • This study focuses on the performance of hydrogen energy based hybrid system in terms of system reliability of electricity generation. With this aim to evaluate the off-grid system of photovoltaic (PV), wind turbine, electrolyzer, fuelcell, $H_2$ tank and storage batteries, 14 different sites in South Korea are simulated using HOMER. Performance analysis includes simulation on the different sites, verification of operational behaviors on regional and seasonal basis, and comparison among a control group. The result shows that the generation performance of hydrogen powered fuelcell is greatly affected by geographical change rather than seasonal effect. In addition, as the latitude of the hybrid systems location decrease, renewable power output and penetration ratio (%) increase under constant electrical load. Therefore, the hydrogen based hybrid system creates the stability of electricity generation, which best suits in the southern part of South Korea.

Design of Hybrid Rocket System Using Qualitative and Semi-Quantitative Reliability Analysis (정성적 및 준-정량적 신뢰성 분석 기법을 이용한 하이브리드 로켓 설계)

  • Moon, Keun Hwan;Park, Young Hoon;Choi, Joo Ho;Kim, Jin Kon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.1
    • /
    • pp.69-76
    • /
    • 2017
  • In this study, design of a small hybrid rocket is carried out using Failure Mode and Effects Analysis (FMEA) and Criticality Analysis(CA), which is a method for qualitative and semi-quantitative reliability analysis. In order to carry out FMEA, the structure of the hybrid rocket is divided into 31 parts and 72 potential failure modes. As a result of the FMEA, the relationship between potential failure modes, causes and effects, and their severity are evaluated qualitatively. Criticality analysis is followed for the failure modes, in which the criticality number is estimated using the failure rate information available from the handbook. Moreover, the failure modes with higher criticality and severity are chosen for improvement, and a series of design or material changes are made for the improvement of the hybrid rocket reliability.

Ammonia Wastewater Treatment and Selective Recovery Using a Sweep Gas-Vacuum Hybrid Type Membrane Degassing Process (스윕 가스-진공 하이브리드식 탈기막 공정을 활용한 암모니아 폐수처리 및 선택적 회수)

  • Hongsik Yoon;Taijin Min;Minkyu Jeon;Sungil Lim;Sechul Oh;Kyungha Ryu;Chungsung Lee;Bosik Kang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_2
    • /
    • pp.1171-1181
    • /
    • 2023
  • In this study, a sweep gas - vacuum hybrid type membrane degassing process was proposed for ammonia wastewater treatment. In addition, the ammonia selective recovery of the hybrid type membrane degassing process was also investigated. As a result, the hybrid type membrane degassing process showed better degassing performance (54.9 mg NH3/m2min for 360 min) than the sweep gas type (32.3 mg NH3/m2min) or vacuum type (22 mg NH3/m2min). Additionally, the hybrid type membrane degassing process showed an excellent ammonia selectivity (103 times compared to Na+ Na+, 133 times compared to Ca2+). The ammonia selectivity was appeared to be due to the conversion characteristics of ammonium ion / dissolved ammonia depending on pH. The results in this study are expected to be used in the development of ammonia wastewater treatment and ammonia recovery in the future.

A Novel Hybrid Anti-islanding Method to Improve Reliability of Utility Interactive Inverter for a PMSG-based Wind Power Generation System (PMSG 기반 풍력발전용 계통연계 인버터의 신뢰성 향상을 위한 새로운 하이브리드 단독운전 방지기법)

  • Kang, Sung-Wook;Kim, Kyeong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.11
    • /
    • pp.27-36
    • /
    • 2013
  • Islanding in a gird connected inverter of wind power generation system may influence a bad effect on equipments or yield safety hazards on grid so it should be detected rapidly and exactly. A passive method to detect islanding is comparatively simpler than an active method but suffers from non detection zone (NDZ). On the other hand, the active method can significantly reduce NDZ by injecting a disturbance into inverter output. To improve the reliability of islanding detection, this paper proposes a hybrid anti-islanding detection method combining the conventional passive method as well as the active method based on novel harmonic injection method using fourier transform. The proposed scheme is fast to detect islanding when NDZ does not exist because it has the nature of passive method. Under NDZ, the active method can detect occurrence of islanding reliably. The effectiveness and validity of the proposed scheme is proved through comparative simulations.

Economic Evaluation on a private electric Generation Application in Unelectrified Remote Islands in Korea (미 전화 도서 자가 발전방식 도입에 따른 경제성 검토)

  • Ahn, Kyo-Sang;Lim, Hee-Chun;Eom, Young-Chang
    • Journal of Hydrogen and New Energy
    • /
    • v.14 no.4
    • /
    • pp.348-358
    • /
    • 2003
  • According to Electricity Acceleration Law of Rural Area recently, the needs for replacement of a small scale diesel power generation facility which supplied electricity to 10-50 households Remote Islands has been revealed due to high operating and maintenance cost of Diesel Power Generation. Optimization of electric power system for Small Remote Islands must be made considering the economics, reliability and stability as power sources and estimation of total construction cost of those power stations. For its purpose, an assessment of power generation options such as Photovoltaic, Fuel cell, Wind-hybrid was implemented, economic evaluation of power supply shows the Photovoltaic, Fuel Cell for few household's islands and Diesel, Wind-hybrid for more inhabited islands. Power supplied by Diesel shows the best response to increasing electric demand and system reliability even with its lower economic value. Those who are in charge of power planning have to pay attention to system reliability, stability and operating characteristics of candidate's power supply besides its economics.

Evaluation of Reliability of Large Hybrid Curvic Gear Using Thermography (서모그래피 기법을 적용한 하이브리드 대형 커빅기어 신뢰성 평가)

  • Lee, Gyung-Il;Kim, Jae-Yeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.3
    • /
    • pp.146-152
    • /
    • 2017
  • Stabilizing the operation of dual fuel diesel engines is very important. The shipbuilding industry is rapidly growing, but gear components requiring reliability are still imported from other countries. The reasoning for this is three-fold. Firstly, it is compulsory that all ships must use devices that meet the performance standards specified in the Safety of Life at Sea (SOLAS) and the convention of MARine POLlution (MAPOL) to prevent pollution caused by ships. Secondly, most ships must comply with the ship classifications specified by ship owners. Therefore, it is specified that key engine gear components must be inspected and authorized for the quality and performance specified by the Ship Register Authority. Thirdly, it is essential that devices (engine gear) for human safety in ships comply with quality standards specified in the regulations and rules by the government. The Ship Register Authority's strict quality standards and approval requirements contribute to the reduction of motivation towards new investment and technology development by device component manufacturers. Therefore, this study aims to develop a method for using infrared thermography to examine gear reliability in order to ensure gear component reliability and national competitiveness in the global market.

Comparisons of Acceptance Sampling Plans for the Exponential Lifetime Distribution

  • Jeong, Hyun-Seok;Yum, Bong-Jin
    • Journal of the Korean Statistical Society
    • /
    • v.23 no.2
    • /
    • pp.421-444
    • /
    • 1994
  • Reliability acceptance sampling is concerned with whether to accept or reject a collection of items based upon the information obtained from life testing. Although various reliability acceptance sampling plans have been developed, little is known about their relatvie performances. This paper compares reliability acceptance sampling plans under Type II censoring, Hybrid censoring, and Time-Truncated Type II censoring assuming that the lifetimes of items in a lot follow an exponential distribution. The three plans are compared in terms of the power, the expected number of failures, and the expected time required to reach a decision. Computational experiments are conducted and the results are tabulated to provide guidelines for selecting an appropriate plan for a given situation.

  • PDF

Reliability-Based Assessment of Structural Safety of Steel-Concrete Hybrid Cable-Stayed Bridge Erected by the FCM and FSM during Construction (FCM과 FSM공법에 의한 강-콘크리트 복합사장교의 신뢰성에 기초한 시공간 구조안전도평가)

  • Yoon, Jung Hyun;Cho, Hyo Nam
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.5
    • /
    • pp.515-526
    • /
    • 2007
  • In this study, the models and methods for the safety assessment of Steel-Concrete Hybrid Cable-Stayed Bridge, which consists of steel composite girder and concrete girder erected by the FCM(Free Cantilever Method) and FSM(Full Staging Method) are proposed for the assurance of structural safety and the prevention against bridge collapse during construction. By the structural reliability approach that reasonably considers the uncertainties associated with the resistance and the load effect, the resistance and the load distribution characteristics of Steel-Concrete Hybrid Cable-Stayed Bridgeare defined and the strength limit state equations of permanent structures and temporary structures during construction are suggested. An AFOSM algorithm and MCS technique are used for the reliability analysis of cables, pylons, girders, steel-concrete conjunction part and temporary bents. Also, component reliability analyses are performed at the construction stages based on the structural system model. To demonstrate their rationality and practicality, the proposed models and approaches are applied to a real bridge. The sensitivity analyses of main parameters are performed in order to identify the critical factors that control the safety of similar bridges. As a result, it may be stated that the proposed models could be implemented as a rational and practical approach for the safety assessment of Steel-Concrete Hybrid Cable-stayed bridges erected by FCM and FSM during construction.