• Title/Summary/Keyword: hybrid optimization technique

Search Result 131, Processing Time 0.023 seconds

SEQUENTIAL MINIMAL OPTIMIZATION WITH RANDOM FOREST ALGORITHM (SMORF) USING TWITTER CLASSIFICATION TECHNIQUES

  • J.Uma;K.Prabha
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.4
    • /
    • pp.116-122
    • /
    • 2023
  • Sentiment categorization technique be commonly isolated interested in threes significant classifications name Machine Learning Procedure (ML), Lexicon Based Method (LB) also finally, the Hybrid Method. In Machine Learning Methods (ML) utilizes phonetic highlights with apply notable ML algorithm. In this paper, in classification and identification be complete base under in optimizations technique called sequential minimal optimization with Random Forest algorithm (SMORF) for expanding the exhibition and proficiency of sentiment classification framework. The three existing classification algorithms are compared with proposed SMORF algorithm. Imitation result within experiential structure is Precisions (P), recalls (R), F-measures (F) and accuracy metric. The proposed sequential minimal optimization with Random Forest (SMORF) provides the great accuracy.

Process Optimization Formulated in GDP/MINLP Using Hybrid Genetic Algorithm (혼합 유전 알고리즘을 이용한 GDP/MINLP로 표현된 공정 최적화)

  • 송상옥;장영중;김구회;윤인섭
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.2
    • /
    • pp.168-175
    • /
    • 2003
  • A new algorithm based on Genetic Algorithms is proposed f3r solving process optimization problems formulated in MINLP, GDP and hybrid MINLP/GDP. This work is focused especially on the design of the Genetic Algorithm suitable to handle disjunctive programming with the same level of MINLP handling capability. Hybridization with the Simulated Annealing is experimented and many heuristics are adopted. Real and binary coded Genetic Algorithm initiates the global search in the entire search space and at every stage Simulated Annealing makes the candidates to climb up the local hills. Multi-Niche Crowding method is adopted as the multimodal function optimization technique. and the adaptation of probabilistic parameters and dynamic penalty systems are also implemented. New strategies to take the logical variables and constraints into consideration are proposed, as well. Various test problems selected from many fields of process systems engineering are tried and satisfactory results are obtained.

Hybrid Technique for Locating and Sizing of Renewable Energy Resources in Power System

  • Durairasan, M.;Kalaiselvan, A.;Sait, H. Habeebullah
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.161-172
    • /
    • 2017
  • In the paper, a hybrid technique is proposed for detecting the location and capacity of distributed generation (DG) sources like wind and photovoltaic (PV) in power system. The novelty of the proposed method is the combined performance of both the Biography Based Optimization (BBO) and Particle Swarm Optimization (PSO) techniques. The mentioned techniques are the optimization techniques, which are used for optimizing the optimum location and capacity of the DG sources for radial distribution network. Initially, the Artificial Neural Network (ANN) is applied to obtain the available capacity of DG sources like wind and PV for 24 hours. The BBO algorithm requires radial distribution network voltage, real and power loss for determining the optimum location and capacity of the DG. Here, the BBO input parameters are classified into sub parameters and allowed as the PSO algorithm optimization process. The PSO synthesis the problem and develops the sub solution with the help of sub parameters. The BBO migration and mutation process is applied for the sub solution of PSO for identifying the optimum location and capacity of DG. For the analysis of the proposed method, the test case is considered. The IEEE standard bench mark 33 bus system is utilized for analyzing the effectiveness of the proposed method. Then the proposed technique is implemented in the MATLAB/simulink platform and the effectiveness is analyzed by comparing it with the BBO and PSO techniques. The comparison results demonstrate the superiority of the proposed approach and confirm its potential to solve the problem.

Heterogeneous Fleet Vehicle Routing Problem with Customer Restriction using Hybrid Particle Swarm Optimization (Hybrid-PSO 해법을 이용한 수요지 제한이 있는 다용량 차량경로문제)

  • Lee, Sang-Heon;Hwang, Sun-Ho
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.35 no.2
    • /
    • pp.150-159
    • /
    • 2009
  • The heterogeneous fleet vehicle routing problem(HVRP) is a variant of the classical vehicle routing problem in which customers are served by a heterogeneous fleet of vehicles with various capacities, fixed costs and variable costs. We propose a new conceptual HVRPCR(HVRP with customer restriction) model including additional customer restrictions in HVRP. In this paper, we develop hybrid particle swarm optimization(HPSO) algorithm with 2-opt and node exchange technique for HVRP. The solution representation is a n-dimensional particle for HVRP with N customers. The decoding method for this representation starts with the transformation of particle into a priority list of customer to enter route and limit of vehicle to serve each customer. The vehicle routes are then constructed based on the customer priority list and limit of vehicle to serve. The proposed algorithm is tested using 8 benchmark problems and it consistently produces high-quality solutions, including new best solutions. The numerical results show that the proposed algorithm is robust and efficient.

Development of Genetic Algorithms for Efficient Constraints Handling (구속조건의 효율적인 처리를 위한 유전자 알고리즘의 개발)

  • Cho, Young-Suk;Choi, Dong-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.725-730
    • /
    • 2000
  • Genetic algorithms based on the theory of natural selection, have been applied to many different fields, and have proven to be relatively robust means to search for global optimum and handle discontinuous or even discrete data. Genetic algorithms are widely used for unconstrained optimization problems. However, their application to constrained optimization problems remains unsettled. The most prevalent technique for coping with infeasible solutions is to penalize a population member for constraint violation. But, the weighting of a penalty for a particular problem constraint is usually determined in the heuristic way. Therefore this paper proposes, the effective technique for handling constraints, the ranking penalty method and hybrid genetic algorithms. And this paper proposes dynamic mutation tate to maintain the diversity in population. The effectiveness of the proposed algorithm is tested on several test problems and results are discussed.

  • PDF

Source Localization Techniques for Magnetoencephalography (MEG)

  • Kwang-Ok An;Chang-Hwan Im;Hyun-Kyo Jung;Yong-Ho Lee;Hyuk-Chan Kwon
    • KIEE International Transaction on Systems and Control
    • /
    • v.2D no.2
    • /
    • pp.53-58
    • /
    • 2002
  • In this paper, various aspects in magnetoencephalography (MEG) source localization are studied. To minimize the errors in experimental data, an approximation technique using a polynomial function is proposed. The simulation shows that the proposed technique yields more accurate results. To improve the convergence characteristics in the optimization algorithm, a hybrid algorithm of evolution strategy and sensitivity analysis is applied to the neuromagnetic inverse problem. The effectiveness of the hybrid algorithm is verified by comparison with conventional algorithms. In addition, an artificial neural network (ANN) is applied to find an initial source location quickly and accurately. The simulation indicates that the proposed technique yields more accurate results effectively.

  • PDF

Multi-Objective Optimization of a Dimpled Channel Using NSGA-II (NSGA-II를 통한 딤플채널의 다중목적함수 최적화)

  • Lee, Ki-Don;Samad, Abdus;Kim, Kwang-Yong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.113-116
    • /
    • 2008
  • This work presents numerical optimization for design of staggered arrays of dimples printed on opposite surfaces of a cooling channel with a fast and elitist Non-Dominated Sorting of Genetic Algorithm (NSGA-II) of multi-objective optimization. As Pareto optimal front produces a set of optimal solutions, the trends of objective functions with design variables are predicted by hybrid multi-objective evolutionary algorithm. The problem is defined by three non-dimensional geometric design variables composed of dimpled channel height, dimple print diameter, dimple spacing and dimple depth to maximize heat transfer rate compromising with pressure drop. Twenty designs generated by Latin hypercube sampling were evaluated by Reynolds-averaged Navier-Stokes solver and the evaluated objectives were used to construct Pareto optimal front through hybrid multi-objective evolutionary algorithm. The optimum designs were grouped by k-mean clustering technique and some of the clustered points were evaluated by flow analysis. With increase in dimple depth, heat transfer rate increases and at the same time pressure drop also increases, while opposite behavior is obtained for the dimple spacing. The heat transfer performance is related to the vertical motion of the flow and the reattachment length in the dimple.

  • PDF

Experimental and numerical structural damage detection using a combined modal strain energy and flexibility method

  • Seyed Milad Hosseini;Mohamad Mohamadi Dehcheshmeh;Gholamreza Ghodrati Amiri
    • Structural Engineering and Mechanics
    • /
    • v.87 no.6
    • /
    • pp.555-574
    • /
    • 2023
  • An efficient optimization algorithm and damage-sensitive objective function are two main components in optimization-based Finite Element Model Updating (FEMU). A suitable combination of these components can considerably affect damage detection accuracy. In this study, a new hybrid damage-sensitive objective function is proposed based on combining two different objection functions to detect the location and extent of damage in structures. The first one is based on Generalized Pseudo Modal Strain Energy (GPMSE), and the second is based on the element's Generalized Flexibility Matrix (GFM). Four well-known population-based metaheuristic algorithms are used to solve the problem and report the optimal solution as damage detection results. These algorithms consist of Cuckoo Search (CS), Teaching-Learning-Based Optimization (TLBO), Moth Flame Optimization (MFO), and Jaya. Three numerical examples and one experimental study are studied to illustrate the capability of the proposed method. The performance of the considered metaheuristics is also compared with each other to choose the most suitable optimizer in structural damage detection. The numerical examinations on truss and frame structures with considering the effects of measurement noise and availability of only the first few vibrating modes reveal the good performance of the proposed technique in identifying damage locations and their severities. Experimental examinations on a six-story shear building structure tested on a shake table also indicate that this method can be considered as a suitable technique for damage assessment of shear building structures.

Power System Congestion Problems using Hybrid Control of PST and Real Power Generation (위상변환기와 발전출력 하이브리드 제어를 이용한 계통 혼잡처리 방안)

  • Kim, Kyu-Ho;Song, Kyung-Bin
    • Proceedings of the KIEE Conference
    • /
    • 2005.11b
    • /
    • pp.223-225
    • /
    • 2005
  • This paper presents a scheme to solve the congestion problem using hybrid control with phase-shifting transformer(PST) and power generation in power systems. A good design of PST and power generation control can improve total transfer capability(TTC) in interconnected systems. This paper deals with an application of optimization technique for TTC calculation. The optimization method is used to maximize power flow of tic line subject to security constraints such as voltage magnitude and real power flow. The proposed method is applied to 10 machines 39 buses model systems to show its effectiveness.

  • PDF

Optimal Design of Nonlinear Squeeze Film Damper Using Hybrid Global Optimization Technique

  • Ahn Young-Kong;Kim Yong-Han;Yang Bo-Suk;Ahn Kyoung-Kwan;Morishita Shin
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.8
    • /
    • pp.1125-1138
    • /
    • 2006
  • The optimal design of the squeeze film damper (SFD) for rotor system has been studied in previous researches. However, these researches have not been considering jumping or nonlinear phenomena of a rotor system with SFD. This paper represents an optimization technique for linear and nonlinear response of a simple rotor system with SFDs by using a hybrid GA-SA algorithm which combined enhanced genetic algorithm (GA) with simulated annealing algorithm (SA). The damper design parameters are the radius, length and radial clearance of the damper. The objective function is to minimize the transmitted load between SFD and foundation at the operating and critical speeds of the rotor system with SFD which has linear and nonlinear unbalance responses. The numerical results show that the transmitted load of the SFD is greatly reduced in linear and nonlinear responses for the rotor system.