• Title/Summary/Keyword: hybrid/mixed element

Search Result 31, Processing Time 0.017 seconds

An efficient six-node plate bending hybrid/mixed element based on mindlin/reissner plate theory

  • Mei, Duan;Miyamoto, Yutaka;Iwasaki, Shoji;Deto, Hideaki;Zhou, Benkuan
    • Structural Engineering and Mechanics
    • /
    • v.5 no.1
    • /
    • pp.69-83
    • /
    • 1997
  • A new efficient hybrid/mixed thin~moderately thick plate bending element with 6-node (HM6-14) is formulated based on the Reissner-Mindlin plate bending theory. The convergence of this element is proved by error estimate theories and verified by patch test respectively. Numerical studies on such an element as HM6-14 demonstrate that it has remarkable convergence, invariability to geometric distorted mesh situations, to axial rotations, and to node positions, and no "locking" phenomenon in thin plate limit. The present element is suitable to many kinds of shape and thin~moderately thick plate bending problems. Further, in comparison with original hybrid/mixed plate bending element HP4, the present element yields an improvement of solutions. Therefore, it is an efficient element and suitable for the development of adaptive multi-field finite element method (FEM).

Development of an Enhanced 8-node Hybrid/Mixed Plane Stress Element : HQ8-14βElement (8절점 Hybrid/Mixed 평면응력요소)

  • Chun, Kyoung Sik;Park, Won Tae;Yhim, Sung Soon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2A
    • /
    • pp.319-326
    • /
    • 2006
  • A new enhanced 8-node hybrid/mixed plane stress elements based on assumed stress fields and modifed shape functions has been presented. The assumed stress fields are derived from the non-conforming displacement modes, which are less sensitive to geometric distortion. Explicit expression of shape functions is modifed so that it can represent any quadratic fields in Cartesian coordinates under the same condition as 9-node isoparametric element. The newly developed element has been designated as 'HQ8-$14{\beta}$'. The presented element is compared with existing elements to establish its accuracy and efficiency. Over a wide range of mesh distortions, the element presented here is found to be exceptionally accurate in predicting displacements.

Static Analysis of Continuous Fiber-Reinforced Laminated Beams Based on Hybrid-Mixed Formulation (혼합 정식화를 이용한 섬유 강화 적층보의 변형해석)

  • Kim, J.G.;Lee, J.K.
    • Journal of Power System Engineering
    • /
    • v.15 no.6
    • /
    • pp.47-52
    • /
    • 2011
  • In this study, an accurate 2-noded hybrid-mixed element for continuous fiber-reinforced laminated beams is newly proposed. The present element including the effect of shear deformation is based on Hellinger-Reissner variational principle, and introduces additional consistent node less degrees for displacement field interpolation in order to enhance the numerical performance. The micromechanical and lamination theory are employed in the finite element description to consider the effects of the laminate stacking sequences, material orthotropy, and fiber volume fraction, etc. The element stiffness matrix can be explicitly derived through the stationary condition and static condensation using Mathematica program. Several numerical examples confirm the accuracy of the present hybrid-mixed element and also show in detail the effects of the continuous fiber volume fraction, stacking sequences and boundary condition on the bending behavior of laminated beams.

Efficient geometric nonlinear analyses of circular plate bending problems

  • Duan, Mei
    • Structural Engineering and Mechanics
    • /
    • v.20 no.4
    • /
    • pp.405-420
    • /
    • 2005
  • In this paper, a hybrid/mixed nonlinear shell element is developed in polar coordinate system based on Hellinger/Reissner variational principle and the large-deflection theory of plate. A numerical solution scheme is formulated using the hybrid/mixed finite element method (HMFEM), in which the nodal values of bending moments and the deflection are the unknown discrete parameters. Stability of the present element is studied. The large-deflection analyses are performed for simple supported and clamped circular plates under uniformly distributed and concentrated loads using HMFEM and the traditional displacement finite element method. A parametric study is also conducted in the research. The accuracy of the shell element is investigated using numerical computations. Comparisons of numerical solutions are made with theoretical results, finite element analysis and the available numerical results. Excellent agreements are shown.

A New Hybrid-Mixed Composite Laminated Curved Beam Element

  • Lee Ho-Cheol;Kim Jin-Gon
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.811-819
    • /
    • 2005
  • In this study, we present a new efficient hybrid-mixed composite laminated curved beam element. The present element, which is based on the Hellinger-Reissner variational principle and the first-order shear deformation lamination theory, employs consistent stress parameters corresponding to cubic displacement polynomials with additional nodeless degrees in order to resolve the numerical difficulties due to the spurious constraints. The stress parameters are eliminated and the nodeless degrees are condensed out to obtain the ($6{\times}6$) element stiffness matrix. The present study also incorporates the straightforward prediction of interlaminar stresses from equilibrium equations. Several numerical examples confirm the superior behavior of the present composite laminated curved beam element.

Optimal Interpolation Functions of 2-None Hybrid-Mixed Curved Beam Element (두 절점 혼합 곡선 보요소의 보간함수 선정)

  • Kim, Jin-Gon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.3003-3009
    • /
    • 2000
  • In this paper, we propose a new efficient hybrid-mixed C(sup)0 curved beam element with the optimal interpolation functions determined from numerical tests, which gives very accurate locking-free two-node curved beam element. In the element level, the stress parameters are eliminated from the stationary condition and the nodeless degrees of freedom are also removed by static condensation so that a standard six-by-six stiffness matrix is finally obtained. The numeri cal benchmark problems show that the element with cubic displacement functions and quadratic stress functions is the most efficient.

In-Plane Flexural Vibration Analysis of Arches Using Three-Noded Hybrid-Mixed Element (3절점 혼합유한요소를 이용한 아치의 면내굽힘진동해석)

  • Kim, J.G.
    • Journal of Power System Engineering
    • /
    • v.10 no.4
    • /
    • pp.83-89
    • /
    • 2006
  • Curved beams are more efficient in transfer of loads than straight beams because the transfer is effected by bending, shear and membrane action. The finite element method is a versatile method for solving structural mechanics problems and curved beam problems have been solved using this method by many author. In this study, a new three-noded hybrid-mixed curved beam element is proposed to investigate the in-plane flexural vibration behavior of arches depending on the curvature, aspect ratio and boundary conditions, etc. The proposed element including the effect of shear deformation is based on the Hellinger-Reissner variational principle, and employs the quadratic displacement functions and consistent linear stress functions. The stress parameters are then eliminated from the stationary condition of the variational principle so that the standard stiffness equations are obtained. Several numerical examples confirm the accuracy of the proposed finite element and also show the dynamic behavior of arches with various shapes.

  • PDF

A New Higher-Order Hybrid-Mixed Element for Curved Beam Vibrations (곡선보의 자유진동해석을 위한 고차 혼합요소)

  • Kim Jin-Gon;Park Yong-Kuk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.2 s.72
    • /
    • pp.151-160
    • /
    • 2006
  • In this study, we propose a new efficient 2-noded hybrid-mixed element for curved beam vibrationshaving a uniform and non-uniform cross section. The present element considering transverse shear strain is based on Hellinger-Reissner variational principle and introduces additional nodeless degrees for displacement field interpolation in order to enhance the numerical performance. The stress parameters are eliminated by the stationary condition and then the nodeless degrees are condensed out by the Guyan reduction. In the performance evaluation process of the present field-consistent higher-order element, we carefully examine the effects of field consistency and the role of higher-order interpolation functions on the hybrid-mixed formulation. Several benchmark tests confirm e superior behavior of the present hybrid-mixed element for curved beam vibrations.

A HYBRID ITERATIVE METHOD OF SOLUTION FOR MIXED EQUILIBRIUM AND OPTIMIZATION PROBLEMS

  • Zhang, Lijuan;Chen, Jun-Min
    • East Asian mathematical journal
    • /
    • v.26 no.1
    • /
    • pp.25-38
    • /
    • 2010
  • In this paper, we introduce a hybrid iterative method for finding a common element of the set of solutions of a mixed equilibrium problem, the set of common mixed points of finitely many nonexpansive mappings and the set of solutions of the variational inequality for an inverse strongly monotone mapping in a Hilbert space. We show that the iterative sequences converge strongly to a common element of the three sets. The results extended and improved the corresponding results of L.-C.Ceng and J.-C.Yao.

3-Node Relaxed-Equiribrium Hybrid-Mixed Curved Beam Elements (완화된 평형조건을 만족하는 응력함수를 가지는 3절점 혼합 곡선보요소)

  • Kim, Jin-Gon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.2
    • /
    • pp.153-160
    • /
    • 2008
  • In this study, we propose a new three-node hybrid-mixed curved beam element with the relaxed-equiribrium stress functions for static analysis. The proposed element considering shear deformation is based on the Hellinger-Reissner variational principle. The stress functions are carefully chosen from three important considerations: (i) all the kinematic deformation modes must be suppressed, and (ii) the spurious constraints must be removed in the limiting behaviors via the field-consistency, and (iii) the relaxed equilibrium conditions could be incorporated because it might be impossible to select the stress functions and parameters to fully satisfy both the equiribrium conditions and the suppression of kinematic deformation modes in the three-node curved beam hybrid-mixed formulation. Numerical examples confirm the superior and stable behavior of the proposed element regardless of slenderness ratio and curvature. Besides, the proposed element shows the outstanding performance in predicting the stress resultant distributions.