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A New Hybrid-Mixed Composite Laminated
Curved Beam Element

Ho-Cheol Lee, Jin-Gon Kim*
School of Mechanical & Automotive Engineering, Catholic University of Daegu,
Hayang-up, Kyongsan-si, Kyongbuk, 712-702, Korea

In this study, we present a new efficient hybrid-mixed composite laminated curved beam

element. The present element, which is based on the Hellinger-Reissner variational principle

and the first-order shear deformation lamination theory, employs consistent stress parameters

corresponding to cubic displacement polynomials with additional nodeless degrees in order to

resolve the numerical difficulties due to the spurious constraints. The stress parameters are

eliminated and the nodeless degrees are condensed out to obtain the (6 X6) element stiffness

matrix. The present study also incorporates the straightforward prediction of interlaminar

stresses from equilibrium equations. Several numerical examples confirm the superior behavior

of the present composite laminated curved beam element.
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1. Introduction

Fiber-reinforced composite laminates with high
specific stiffness and strength are widely used for
lightweight structures. By choosing the fiber ori-
entation in each lamina and stacking sequence of
the layers, a number of desired structural as well
as thermal characteristics can be designed. The
increasing use of composite materials demands
clear understanding of their behavior and per-
formance under severe operating environments. A
delamination can be caused by the shear stresses
between the layers due to the mismatch of mate-
rial properties between materials. An understand-
ing of failure due to delamination is of consi-
derable importance in the reliable analysis and
design of advanced fiber reinforced composite
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structures.

Beams are the simplest and most commonly
used structural elements used in a variety of engi-
neering structures. The earliest attempts to de-
velop a thin curved beam element based on the
Kirchhoff-Love theory were not successful when
C%-continuous tangential and C'-continuous
normal displacements are employed (Ashwell
and Sabir, 1971 ; Dawe, 1974). Some shear flex-
ible arch elements based on the Mindlin-Reissner
theory permit the use of C°-continuous inter-
polation functions for displacements (Noor et
al., 1977 ; Noor and Peters, 1981 ; Stolarski and
Belytschko, 1983). The Mindlin-Reissner theory
requires a shear correction factor to correct the
strain energy of deformation. Higher order beam
theories have been proposed to model the cross-
sectional warping and to remove the shear cor-
rection factor (Stephen and Levinson, 1979 ; Le-
vinson, 1981a; Levinson, 1981b ; Rychter, 1987 ;
Kant and Manjunath, 1989).

These early attempts were unsuccessful because
the developed elements are suffered from an ex-
cessive bending stiffness, called membrane lock-



812 Ho-Cheol Lee and Jin-Gon Kim

ing, in the limit of inextensional bending or
excessive shearing, called shear locking, in the
thin~beam limit (Dawe, 1974 ; Noor et al., 1977 ;
Noor and Peters, 1981 ; Stolarski and Belytschko,
1983). To alleviate these numerical difficulties,
special techniques based on the most popular
minimum potential energy principle are propos-
ed, such as the selective/reduced integration tech-
nique (Stolarski and Belytschko, 1982 ; Moon et
al., 1996), field-consistent element (Prathap and
Babu, 1986) and strain-based element (Ryu and
Sin, 1996), etc. Besides these displacement ele-
ments, hybrid-mixed finite elements (Saleeb and
Chang, 1987 ; Dorfi and Busby, 1994 ; Kim and
Kim, 1998 ; Kim, 2000) based on the Hellinger-
Reissner variational principle have been shown to
be quite successful. Among others, Kim and Kim
(1998) propose a new hybrid-mixed curved beam
element, which may be the most accurate locking-
free curved beam element by introducing the
nodeless degrees of freedom and consistent stress
parameters.

In this paper, we propose a new hybrid-mixed
composite laminated curved beam element with
nodeless degrees of freedoms. The introduction of
nodeless degrees makes possible to estimate the
interlaminar stresses by choosing stress equili-
brium equations. The present laminated curved
beam element is based on the first~order shear
deformation lamination theory. In many prob-
lems, the use of stacking sequences, which do not
exhibit the transverse deformation to the load
plane, makes a two dimensional analysis of curv-
ed laminated composite beams practically useful.
For the development of the present hybrid-mixed
element, the field-consistency concept (Prathap
and Babu, 1986 ; Kim and Kim, _1998) is utilized
to select appropriate stress parameters. At the
element level, the stress parameters are eliminated
from the stationary condition and the nodeless
degrees of freedom are also removed by static
condensation (Cook et al., 1989) so that a stand-
ard six-by-six stiffness matrix is finally obtained.
The efficiency of the present element can well
compensate the additional computational effort
necessary in the element level. The numerical
results in several test problems confirm the excel-

lent performance of the present element.

2. Hellinger-Reissner
Variational Principle

Fig. 1 shows a two—-noded curved beam element
with six displacement degrees of freedom. The
tangential and transverse displacements are de-
noted by % and v, the normal rotation, §. The
tangential and transverse stress resultants are
defined as NV and V, and the moment resultant,
M. The corresponding nodal values are subscrib-
ed with | and 2. The curved beam element has the
thickness /, the initial radius of curvature R and
the length /.

The Hellinger-Reissner variational principle
for an element (Washizu, 1982) is expressed

HR='/C[—% dtSO'+o"e]dx— w (1)
where

W=f(pxu+pyv) dx
‘ (2)
+é(Niu,~+ I/ivi+Mi6i)

In Egs. (1) and (2), the generalized stress ¢ and
strain € vectors are defined as o=[N, V, M]?
and e=[eo, 7, k], respectively. The generalized
material compliance matrix is denoted by S. The
kinematic relations and constitutive equations are
found from the general shell theory by Naghdi
and Reissner (Saleeb and Chang, 1987):
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Fig. 1 The geometry of a two-noded curved beam

element
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where @ is the circumferential angle. Assuming
that (y/R)2<1, the normal and shear strain com-
ponents &x and ¥ for a deep curved beam at a
distance vy from the reference surface can be
denoted by

1

6x=1_—y/R'(€o‘y/{)
x(H—?-i-F)(eo—ylc)
R NP SO N i
ro= (1t gt ) @)

For a single ply denoted by %, the stress-strain
relations for a two-dimensional beam analysis are

ok=FE}ek (5a)
4v?
oy = fks[l”%]%}gy (5b)

where E% and G% are the effective elastic mo-
dulus and the shear modulus, respectively, and &
is the shear factor. The thermal and hygrothermal
effects and the temperature variation of the elastic
constants are not considered in the present for-
mulations. We can express E% and G% from the
properties in principal material directions and the
angle ¢, between the fiber direction and the beam
length axis {Vinson and Sierakowski, 1986) as
follows.

4
cos” a 1 2v .
El= % -|-< 12 )cos2 @r SI® @

E.u4 G: En (6a)
+ SN Qe
Es
G§= Gis cos? ar+ Gos sin? [27°8 (6b)

Substituting Eqs. (4) and (5) into the equations
for stress resultants and integrating the stress
resultants over the cross-sectional area, then we
can construct the following matrix form

NL rhy
| oxbdy
k=1Jh

N N
o= Vi=¢ 2 e bdy
M AT
k ;" 7
g " otyb dy (7)
I, 0 Izl | &
=| 0 BZ 0 Y =F'$
Iis 0 Is| | &
where
]—'11=A1+%2“ i;%% (83)
Ti=—( At +22) (8b)
B 1 4 4B, 4B
Bzzks{Bl‘i‘*ﬁ (F_ﬁ>Bg_Rh;_R2]’:Z}<8C)
HszAa‘l'%-}‘% (84d)
In the above, the coefficients are defined as
Av=2ER (=) /n (n=1,,5) (5)
NL
Bu=F GibUit—Hi) /n (=1, 5) (9b)

where NL and b denote the number of lamina-
tes and the beam width, respectively. The compli-
ance matrix S needed in Eq. (1) can be obtained
from the inverse of the constitutive matrix I in
Eq. (7).

The thickness variation of constitutive laws and
continuity requirements across interfaces make
the three/two-dimensional finite element analysis
very difficult. In addition, a large number of ele-
ments are required to gain acceptable levels of
accuracy particularly with reference to stress con-
tinuity requirements at the interface. For these
reasons, Kant and Manjunath (1989) have shown
that by integrating the two stress equilibrium
equations of two-dimensional elasticity for each
layer over the lamina thickness and summing over
layer 1 to L, estimates of interlaminar stresses can
be obtained as follows.

The differential equations of equilibrium re-
presenting the pointwise equilibrium can be writ-
ten as
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;=0 (i, j=x,y) (10)

Substituting of the lamina stress in Eq. (10) and

integrating, the interlaminar shear stress can be
obtained as

L Pp+1
thlnn=—2 )" dytc ()

Substituting the lamina stress in Eq. (10) and
eliminating interlaminar shear stress, the follow-
ing second order differential equation is obtained.

aZOx _ 820'5/
ox* 0yt

(12)

The integration of Eq. (12) yields the following
interlaminar normal stress as

kg1 ( az Ox

5 dy)dy+yCz+C3 (13)

L
oy |.v=hL+1=—}§1 .
The constants of integration are so determined to
sastisfy the conditions for ¢y and 7xy on 2=14/2
(Pagano, 1969). In view of availability of only a
single constant, the interlaminar shear stress esti-
mate may not in general satisfy beam boundary
conditions at the boundary surfaces. In case of
interlaminar normal stress, this problem does not
arise, because here two constants of integration
obtained by integrating twice can be determined
by substituting two boundary conditions at 2=
+4/2. Eq. (13) is solved as a boundary value
problem, but this requires use of at least a cubic
element, so that the third derivatives of displace-
ments can be determined. Present element satisfy
this requirement.

3. Field Assumption

For the present hybrid-mixed two-noded cubic
element, we propose to use bubble functions such
as £(1—&) and £2(1—§&) in addition to the usual
linear interpolation functions for displacements.
Using the dimensionless co-ordinate £=¢/¢@p
(0<<£<1), the following displacement interpola-
tion is considered.

(I8 wmtewmte(1-8a+8U—-8a
v=(1-8 utént+f(I1-8b+&(1-Eb (14)
0=(1—8&)+E6+E(1-8) at(1-8) e

Uu

one may put equation (14) in compact form

u=[Nc:Nb]-{d°}=N-d (15)
d,

where dp={ @y, *c2}* are the nodeless degrees
of freedom which are associated with significant
deformation at £=1/2 with vanishing deforma-
tion at nodes, £=0 and 1. The conventional no-
dal displacement components are defined by d.=
{u1, (92}{

To select appropriate stress interpolation func-
tions needed in the hybrid-mixed formulation, the
limiting behavior of strains should be examined.
As the beam becomes extremely thin and nearly
straight, ie., (R — o), the shear strain must
vanish.

_ dv_
N=hdE

Examining equation (16), one sees that four

—0—-0 (16)

constraints including ¢; — 0 are imposed as the
shear strain 7y, approaches zero. In particular, the
constraint of vanishing ¢; yields the unnecessary
constraint expressed by e, — 0 in the element
region (Prathap, 1993). Similarly in the limit of
inextensional bending, we can find one spurious
constraint of vanishing b, by examining the limi-
ting behavior of

Go= u,5+7%—> 0 (17

Obviously, the consequence of the constraint on
b; is that the term v,z vanishes in the element
level. To overcome these spurious constraints,
which lead to locking phenomena and stress os-
cillations over the element, the quadratic stress
functions should be adopted as

N
o=V ;=P8 (18)
M
where
B=(B Be- Bs B ™ (19)
and

100E00E&%20 0
P=|0100£00 &0 (20)
00100&0 0 &
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These consistent stress parameters can be recon-
firmed by the matching requirement of stress—
displacement fields (Pian and Chen, 1983), Dim
(B) =Dim(u) — the number of rigid-body de-
grees of freedoms, namely Dim(8) =12—3=9.
The present consistent higher-order hybrid-mix-
ed curved composite beam element based on Eqs.
(15) and (18) will be designated by CDCSQ2.
This element will. be compared with 2-noded
hybrid-mixed element designated by CDQSL2,
which has consistent quadratic displacement-lin-
ear stress approximation.

4, Finite Element Formulation

For the finite element formulation, Egs. (15)
and (18) are substituted into Eq. (1) to yield

x=8'Gd—4 B'HA—d'D—Q'd  (21)
where

H= CP*SP dx (22)
G= f P‘B dx= / P/[B. : Bo]dx=[Ge: Go] (23)

o= [Nilps, by, 0]dx (24)

Here, the matrix ( is expressed in terms of the
strain-displacement matrix B, and B, which cor-
respond to the nodal and nodeless displacement
components, respectively, and ¢ is the consistent
load vector due to surface tractions. The applied
nodal force vector is also denoted by Q.

Invoking the stationarity of the functional with
respect to d and B gives

G'B=Q+
H'8=Gd

(25a)
(25b)

The elimination of @ in Eq. (25) in the element
level yields the following form of equations :

KCC KCb {dC}_{Q+(I)}
[Kbc Kbb] "1 o (26)
where the element substiffness matrices K;; are
K;=GH'G; ({and j=c, b) (27)

Since the nodeless variables d, are designed not
to carry any load, d» can be eliminated in the
element level by the condensation of Eq. (26).

d.= —KgéKbcdc (28>

The substitution of Eq. (28) into the first set of
equations in Eq. (26) results in

K°-d.=Q+d
K=K~ Ko Kzt Kec

This element stiffness matrix K° of a CDCSQ2
element can now be treated easily for the assem-
bly and subsequent analysis. If the constant stress
and linear displacement field is employed without
the use of nodeless variables, the resulting stiff-
ness, which is equal to K, reduces exactly to
the stiffness matrix of a CDQSL2 element and
Dorfi’s P1-type element (Dorfi and Busby, 1994).

(29a)
(29b)

5. Numerical Examples

In this section, we evaluate the numerical per-
formance of the present finite element for the
several problems. The present results are com-
pared with those reported by existing analytical
and/or numerical results.

5.1 Composite cantilever beam bending

To show whether the present element exhibits
locking problem for thin beam, a thin composite
cantilever beam under the tip load P at the free
end is considered since its analytical solution is
well known. Material and geometric data are
given in Table 1 (Vinson and Sierakowski, 1994).
Using the Timoshenko beam theory applied to
laminated composites, the tip deflection is given
by

o= PL{H(=5(£) (L)) +5( )]

A1 ) 1
(ALA;s—A3) ks(Bi—4Bsy/ 1?)

where L is the length of the beam, % the thickness
of the beam, ks the shear factor and (A;, A, As,
Bi, Bs) are defined by Eq. (9).

H=2 ; [2=
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Table 1 Material and geometric data of a straight

beam

Table 2 Material and geometric data of a pinched

ring

Material (Kevlar epoxy)

Material {(graphite epoxy)

Ell 76 GPa En 289 GPa

E22 5.5GPa Es 6.06 GPa
G11=G13=G23 2.3 GPa G12=G13=Gas 4.13 GPa

V12 0.34 V12 0.31

Geometry

Geometry

Stacking sequence

[90/45/-45/45/-45/0]s

Stacking sequence

[90/45/-45/45/-45]s

Beam length 0.5m Radius R 0.1 m
Beam height 12 mm Beam height 7 20 mm
Beam width 20 mm Beam width b 20 mm
Tip transverse load IN Shear factor ks 1.2
11 op
1.0 e = S "
= -
[3] B i
g o9 ; R )
§ 0.8 J Theory
2 / —a— CDLSG2 R
8 %77 o CDCSQ2(present)
T 06+ , B
= ! t
Zos| |
2 o0ad ]
03 T T T T T T T T T T
o 1 2 3 4 5 & 7 8 9 10 11
2P

Number of Elements
Fig. 2 Convergence behavior of the normalized dis-
placement at the loaded point in the straight
cantilever beam

Figure 2 shows the convergence behavior for
the normalized tip deflection at the free edge. It is
clear that the CDCSQ2 element shows more ra-
pid convergence than the CDQSL2 element. The
CDCSQ2 element requires some additional cal-
culations to obtain KKziKsc in Eq. (29b) for
each element. Regardless of the additional com-
putational effort needed for CDCSQ2, CDCSQ2
with the additional nodeless degrees is more
effective than CDQSL2.

52 Composite pinched ring

Figure 3 shows a composite pinched ring with
a radius of 0.1 m and thickness of 0.02 m (R/h=
5) subjected to compressive point loads in radial
direction. A pinched ring serves as the best illus-

Fig. 3 Composite ring under compressive point load

tration to evaluate the element behavior in a deep
arch problem. The quadrant from A to B of the
ring is modeled because of the double symmetry.
Material and geometric data are given in Table 2
(Vinson and Sierakowski, 1994).

The convergence behavior of present element
is demonstrated in Fig. 4. It is seen that the
CDCSQ?2 element gives more rapidly converging
results than the CDQSL2 element without no-
deless degrees. To compare the performance of
CDCSQ2 and CDQL?2 in the stress prediction, the
normal force distributions obtained from the var-
ious subdivision are plotted in Fig. 5. The accu-
rate prediction of the generalized stresses is very
important for the subsequent calculation of the
interlaminar stresses to cause a delamination. We
can see that the two element idealization with
CDCSQ?2 yields the results excellently agreeing
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Fig. 4 Convergence of the normalized radial dis-
placement at the loaded point in the pinched
ring shown in Fig. 3
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Fig. 5 Normal force approximation of the composite

pinched ring

with the exact theoretical normal force distributi-
on N=—Psin ¢.

5.3 Simply-supported beam under sinusoidal
transverse load

Figure 6 shows a simply-supported beam under
sinusoidal transverse load py,=posin(mx/L). In
order to compare the present result with those by
the elasticity theory and the classical laminated
plate theory(CPT) given by Pagano (1969), we
consider layers of square symmetric unidirec-
tional fibrous composite material possessing the
following stiffness properties in Table 3, which
simulate a high modulus graphite/epoxy compo-
site. Subscripts I. and T denote the direction
parallel to the fibers and the transverse direction,
respectively. The geometrical configuration is a
symmetric 3-ply laminate with layers of equal

Table 3 Material data of a simply-supported beam

Material (graphite/epoxy)

L 25,000 ksi
Er 1,000 ksi
Gir 500 ksi
Grr 200 ksi
VLr= U1t 0.25

y
By
NN
Y
ﬁLf
L L —

i
Fig. 6 Simply-supported beam under sinusoidal

transverse load

1, (0.5 / :

Do ! | } ‘

0.1 oy
Tay =

0.0 1

0.2

-0.3

0.4 -

0.5 LT

Fig. 7 Thickness vs interlaminar shear stress

thickness - the L direction coincides with x in the
outer layers, while T is parallel to x in the central
layer. A shear correction factor of 1.2 and a span-
to-depth ratio of 4 are used in this study.

The distributions of the normalized interla-
minar shear stress 7,y and the normalized in-
plane stress 0y are shown in Fig. 7 and Fig. 8,
respectively. The present results for Tx, and ox
substantially agree with the CPT solution by
Pagano. Finally, the distribution of the norma-
lized interlaminar normal stress ¢y is shown in
Fig. 9. The distribution of interlaminar normal
stress integrating twice the second derivatives of
Ox slightly underestimates the value compared to
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Fig. 9 Thickness vs interlaminar normal stress

the elasticity solution near the top surface of the
beam. Although additional computational efforts
on the element level are necessary in the present
element CDCSQ?2, this is well compensated by the
increased accuracy and the practical prediction of
the interlaminar stresses.

6. Conclusions

In this work, we propose a new highly accurate
hybrid-mixed laminated curved beam element in-
troducing the nodeless degrees, which can handle
the prediction of interlaminar stress by choosing
stress equilibrium equations. The present lami-
nated curved beam element, which is based on the
Hellinger-Reissner variational principle and the
first-order shear deformation lamination theory,
employs consistent stress parameters correspond-

ing to cubic displacement polynomials to resolve
the numerical difficulties due to the spurious
constraints and improve the accuracy. The stress
parameters are eliminated and the nodeless de-
grees are condensed out to obtain the conven-
tional element stiffness matrix. Several numerical
examples confirm the accuracy and efficiency of
the present hybrid-mixed laminated curved beam
element.
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