• Title/Summary/Keyword: human-to-human (H2H)

Search Result 3,629, Processing Time 0.032 seconds

Prevention of UV-induced Skin Damage by Activation of Tumor Suppressor Genes p53 and $p14^{ARF}$

  • Petersen, R.;John, S.;Lueder, M.;Borchert, S.
    • Proceedings of the SCSK Conference
    • /
    • 2003.09a
    • /
    • pp.338-351
    • /
    • 2003
  • UV radiation is the most dangerous stress factor among permanent environmental impacts on human skin. Consequences of UV exposure are aberrant tissue architecture, alterations in skin cells including functional changes. Nowadays new kinds of outdoor leisure-time activities and changing environmental conditions make the question of sun protection more important than ever. It is necessary to recognize that self-confident consumers do not consider to change their way of life, they demand modern solutions on the basis of new scientific developments. In the past one fundamental principle of cosmetics was the use of physical and organic filter systems against damaging UV-rays. Today new research results demonstrate that natural protecting cell mechanisms can be activated. Suitable biological actives strongly support the protection function not from the surface but from the inside of the cell. A soy seed preparation (SSP) was proven to stimulate natural skin protective functions. The major functions are an increased energy level and the prevention of DNA damage. These functions can I be defined as biological UV protection. The tumor suppressor protein p53 plays a key role in the regulation of DNA repair. p53 must be transferred into the phosphorylated form to work as transcription factor for genes which are regulating the cell cycle or organizing DNA repair. A pretreatment with SSP increases the phosphorylation rate of p53 of chronically UV-irradiated human keratinocytes significantly. According to the same test procedure SSP induces a dramatic increase in the expression of the tumor suppressor protein p14$^{ARF}$ that is supporting the p53 activity by blocking the antagonist of p53, the oncoprotein Mdm2. Mdm2, a ubiquitin E3-ligase, downregulates p53 and at the same time it prevents phosphorylation of p53. The positive influence of the tumor suppressor proteins explains the stimulation of DNA repair and prevention of sunburn cell formation by SSP, which was proven in cell culture experiments. In vivo the increased skin tolerance against UV irradiation by SSP could be confirmed too. We have assumed, that an increased repair potential provides full cell functionality.y.

  • PDF

Isolation and characterization of bovine cementoblast progenitor cells

  • Saito, Masahiro;Tsunoda, Akira;Teranaka, Toshio
    • Proceedings of the KACD Conference
    • /
    • 2003.11a
    • /
    • pp.546.2-546
    • /
    • 2003
  • Dental follicle is the mesenchymal tissue which surrounds developing tooth germ. During tooth root development, periodontal components such as cementum, periodontal ligament and alveolar bone are considered to be created by progenitors present in the dental follicle. However, little is known about these progenitors. Previously we observed that cultured bovine dental follicle cells (BDFC) contained putative cementoblast progenitors. To further analyze the biology of these cells, we have attempted to immortalize BDFC by expression of the polycomb group protein Bmi-1 and human telomerase reverse transcriptase (hTERT). The BDFC expressing Bmi-1 and hTERT showed extended life span by 90 population doublings more than normal BDFC, and still contained cells with potential to differentiate into cementoblasts upon implantation into immunodeficiency mice. Among them, we established a clonal cell line designated as BCPb8, which formed cemetum-like mineralized tissue reactive to anti-cementum specific monoclonal antibody, 3G9, and expressed mRNA for bone sialoprotein, osteocalcin, osteopontin and type I collagen upon implantation. Thus with the combination of hTERT and Bmi-1, we succeeded in immortalization of cementoblast progenitor in BDFC without affecting differentiation potential. The BCPb8 progenitor cell line could be a useful tool not only to study cementogenesis but also to develop regeneration therapy for periodontitis.

  • PDF

Effect of Macro-nutrients for the Salidroside Production from Callus Cultures of Rhodiola sachalinesis A. Bor (참돌꽃의 캘러스로부터 salidroside 생산에 미치는 배지성분의 영향)

  • Lee, Jae-Seung;Choi, Hye-Jin;Hwang, Baik;Park, Hyoung-Jae;Ahn, Jun-Cheul;Hwang, Sung-Jin
    • Korean Journal of Medicinal Crop Science
    • /
    • v.15 no.4
    • /
    • pp.246-250
    • /
    • 2007
  • Rhodiola sachalinensis A. Bor is a Chinese herb containing the natural compound salidroside, which has been known to possess medical properties such as enhancing bodies' ability to survive in adverse environments and extending human life. To improve a metabolite production from Rhodiola sachalinensis callus cultures, the concentrations of macro nutrients were investigated. To investigate the salidroside production in Rhodiola sachalinensis callus cultures, we analyzed salidroside content in each callus which was cultured in 30 $m{\ell}$ of $2\;{\times}\;B_5$ liquid medium for 4 weeks. The optimal concentrations of macro nutrients for salidroside production ($67.96\;{\pm}\;3.41\;mg/{\ell}$) were found to be 99 mM $KNO_3$, 1 mM $(NH_4)_2SO_4$, 2 mM $NaH_2PO_4{\cdot}2H_2O$, 2 mM $CaCl_2{\cdot}2H_2O$ and 1 mM $MgSO_4{\cdot}7H_2O$. From these results, we determined the more upgraded culture condition for industrial production of salidroside.

Effect of Chlorine Dioxide and Commercial Chlorine Sanitizer on Inhibiting Foodborne Pathogens and on Preventing the Formation of Chemically Injured Cells on Radish Sprouts

  • Choi, Mi-Ran;Kang, Dong-Hyun;Heu, Sung-Gi;Lee, Sun-Young
    • Food Quality and Culture
    • /
    • v.3 no.1
    • /
    • pp.34-39
    • /
    • 2009
  • This study assessed the efficacy of aqueous chlorine dioxide ($ClO_2$) and commercial chlorine sanitizer in terms of its ability to eliminate Listeria monocytogenes, Salmonella Typhimurium, and Escherichia coli O157:H7 on radish sprouts (Raphanus sativus L.). Radish sprouts were inoculated with a cocktail containing one each of three strains of three different foodborne pathogens, then treated with distilled water (control) or chemical sanitizers (100 ppm commercial chlorine, and 50, 100, 200 ppm $C1O_2$) for 1, 5, and 10 min at room temperature ($22{\pm}2^{\circ}C$). Populations of S. Typhimurium, E. coli O157:H7 and L. monocytogenes were counted at 4.64, 6.05, and 4.29 log CFU/g, respectively, after inoculation. Treatment with water did not significantly reduce the levels of any of the three foodborne pathogens. The levels of all three pathogens were reduced by treatment with chemical sanitizers; however, the observed levels of reduction of E. coli O157:H7 and L. monocytogenes were not significant as compared with the controls. The levels of the three pathogens were reduced most profoundly when treated for 10 min with 200 ppm of $C1O_2$, and the reduction levels of S. Typhimurium, E. coli O157:H7, and L. monocytogenes were 1.17, 1.63, and 0.96 log CFU/g, respectively. When chemically injured cells were investigated using SPRAB for E. coli O157 :H7 and by selective overlay methods for S. Typhimurium and L. monocytogenes, respectively, it was noted that commercial chlorine sanitizer generated more numbers of injured pathogens than did $C1O_2$. These data indicate that $C1O_2$ treatment may prove useful in reducing the numbers of pathogenic bacteria in radish sprouts.

  • PDF

Cell Cycle Arrest and Cytochrome c-mediated Apoptotic Induction in A549 Human Lung Cancer Cells by MCS-C2, an Analog of Sangivamycin

  • Kang, Jeong-Hwa;Lee, Dong-Keun;Lee, Chul-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.2
    • /
    • pp.433-437
    • /
    • 2010
  • In the course of screening for novel modulators of cell cycle progression and apoptosis as anticancer drug candidates, we generated an analog of sangivamycin, MCS-C2, which was elucidated as 4-amino-6-bromo-7-cyclopentyl-7H-pyrrolo[2,3-d]pyrimidine-5-carboxamide. In the present study, we evaluated the molecular mechanisms of MCSC2-induced cell cycle arrest and apoptosis in A549 human lung cancer cells. To investigate the effects of MCS-C2 on cell cycle progression in A549 cells, we measured the DNA content of A549 cells treated with $5\;{\mu}M$ MCS-C2 using flow cytometry. The analysis revealed an appreciable $G_2$ phase arrest in treated cells. This event was associated with significant upregulation of p53 and $p21^{Cip1}$. In addition, the TUNEL assay was used to examine apoptotic induction in treated cells, and the effects of MCS-C2 on the expression of apoptosis-associated proteins were examined by Western blot. Apoptotic induction in MCS-C2-treated A549 cells was associated with cytochrome c release from mitochondria, which in turn resulted in the activation of caspase-9 and -3 and the cleavage of poly(ADP-ribose) polymerase (PARP). Based on these results, we conclude that MCS-C2 is a candidate therapeutic agent for the treatment of human lung cancer via upregulation and activation of p53.

Inhibition of Tumor Growth in a Mouse Xenograft Model by the Humanized Anti-HGF Monoclonal Antibody YYB-101 Produced in a Large-Scale CHO Cell Culture

  • Song, Seong-Won;Lee, Song-Jae;Kim, Chang-Young;Song, Jae-Kyung;Jung, Eui-Jung;Choi, Yong Bock;Min, Sung-Won;Oh, Jong-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.9
    • /
    • pp.1327-1338
    • /
    • 2013
  • The humanized anti-hepatocyte growth factor (HGF) monoclonal antibody (mAb) YYB-101 is a promising therapeutic candidate for treating various cancers. In this study, we developed a bioprocess for large-scale production of YYB-101 and evaluated its therapeutic potential for tumor treatment using a xenograft mouse model. By screening diverse chemically defined basal media formulations and by assessing the effects of various feed supplements and feeding schedules on cell growth and antibody production, we established an optimal medium and feeding method to produce 757 mg/l of YYB-101 in flask cultures, representing a 7.5-fold increase in titer compared with that obtained under non-optimized conditions. The optimal dissolved oxygen concentration for antibody production was 70% $pO_2$. A pH shift from 7.2 to 7.0, rather than controlled pH of either 7.0 or 7.2, resulted in productivity improvement in 5 L and 200 L bioreactors, yielding 737 and 830 mg/ml of YYB-101, respectively. The YYB-101 mAb highly purified by affinity chromatography using a Protein A column and two-step ion exchange chromatography effectively neutralized HGF in a cell-based assay and showed potent tumor suppression activity in a mouse xenograft model established with human glioblastoma cells.

Achieving High Yield of Lactic Acid for Antimicrobial Characterization in Cephalosporin-Resistant Lactobacillus by the Co-Expression of theosphofructokinase and Glucokinase

  • Gong, Yahui;Li, Tiyuan;Li, Shiyu;Jiang, Zhenyou;Yang, Yan;Huang, Junli;Liu, Zhaobing;Sun, Hanxiao
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.6
    • /
    • pp.1148-1161
    • /
    • 2016
  • Lactobacilli are universally recognized as probiotics that are widely used in the adjuvant treatment of inflammatory diseases, such as vaginitis and enteritis. With the overuse of antibiotics in recent years, the lactobacilli in the human body are killed, which could disrupt the microecological balance in the human body and affect health adversely. In this work, cephalosporin-resistant Lactobacillus casei RL20 was obtained successfully from the feces of healthy volunteers, which possessed a stable genetic set. However, the shortage of lactic acid (72.0 g/l at 48 h) by fermentation did not meet the requirement for its use in medicine. To increase the production of lactic acid, the functional genes pfk and glk were introduced into the wild strain. A yield of 144.2 g/l lactic acid was obtained in the transgenic L. casei RL20-2 after fermentation for 48 h in 1 L of basic fermentation medium with an initial glucose concentration of 100 g/l and increasing antibacterial activity. These data suggested that L. casei RL20-2 that exhibited a high yield of lactic acid may be a potential probiotic to inhibit the spread of bacterial infectious diseases and may be used for vaginitis therapy.

Simple and Novel Assay of the Host-Guest Complexation of Homocysteine with Cucurbit[7]uril

  • Park, Se-Ho;Lee, Jae-Yeul;Cho, Hyun-Nam;Kim, Kyoung-Ran;Yang, Seun-Ah;Kim, Hee-Joon;Jhee, Kwang-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.1
    • /
    • pp.114-126
    • /
    • 2019
  • This paper introduces three ways to determine host-guest complexation of cucurbit[7]uril (CB[7]) with homocysteine (Hcy). After preincubating Hcy and cysteine (Cys) with CB[7], Ellman's reagent (DTNB) was used to detect Hcy and Cys. Only Cys reacted with DTNB and Hcy gave a retarded color change. This suggests that the -SH group of Hcy is buried inside CB[7]. Human cystathionine ${\gamma}-lyase$ (hCGL) decreased the level of Hcy degradation after preincubating Hcy and CB[7]. These results suggest that the amount of free Hcy available was decreased by the formation of a Hcy-CB[7] complex. The immunological signal of anti-Hcy monoclonal antibody was decreased significantly by preincubating CB[7] with Hcy. The ELISA results also show that ethanethiol group ($-CH_2CH_2SH$) of Hcy, which is an epitope of anti-Hcy monoclonal antibody, was blocked by the cavity in CB[7]. Overall, CB[7] can act as a host by binding selectively with Hcy, but not Cys. The calculated half-complexation formation concentration of CB[7] was 58.2 nmol using Ellman's protocol, 97.9 nmol using hCGL assay and 87.7 nmol using monoclonal antibody. The differing binding abilities of Hcy and Cys towards the CB[7] host may offer a simple and useful method for determining the Hcy concentration in plasma or serum.

Study on the Biological Characteristics of Cultured Osteoblasts Derived from Alveolar Bone (배양 치조골모세포의 생물학적 특성에 관한 연구)

  • Lee, Yong-Bae;Lee, Seong-Jin;You, Suk-Joo;Kim, Seong-Yun;Sin, Gye-Cheol;Kim, Hyun-A;You, Hyung-Keun;Shin, Hyung-Shik
    • Journal of Periodontal and Implant Science
    • /
    • v.34 no.2
    • /
    • pp.317-332
    • /
    • 2004
  • Osteoblasts from alveolar bone may have an important role in the bone regeneration for periodontium, but their culture and characterization are not determined yet. The purpose of this study was to investigate the biological characteristics of primary explant cultured osteoblasts(PECO) from alveolar bone. Osteoblasts were isolated and cultured from alveolar socket of extracted tooth in children. To compare the characteristics, osteoblasts and gingival fibroblasts were cultured with DMEM at $37^{\circ}C$, 5% $CO_2$, l00% humidity incubator, and human fetal osteoblasts cell line(hFOB1) were cultured with DMEM at $34^{\circ}C$, 5%, $CO_2$ 100% humidity incubator. To characterize the isolated bone cells, morphologic change, cell proliferation and differentiation were measured. Morphology of PECO was small round body or cuboidal shape on inverted microscope and was similar with hFOB1. PECO became polygonal shape with stellate and had an amorphous shape at 9th passage in culture. PECO had significantly higher activity than that of gingival fibroblasts and hFOB1 in alkaline phosphatase activity. The expression of osteocalcin and bone sialoprotein in PECO was notably increased when compared with hFOB1 and gingival fibroblasts. These result indicated that PECO from alveolar bone in children has an obvious characteristics of osteoblast, maybe applied for the regeneration of bone.

shRNA Mediated RHOXF1 Silencing Influences Expression of BCL2 but not CASP8 in MCF-7 and MDA-MB-231 Cell Lines

  • Ghafouri-Fard, Soudeh;Abdollahi, Davood Zare;Omrani, Mirdavood;Azizi, Faezeh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.11
    • /
    • pp.5865-5869
    • /
    • 2012
  • RHOXF1 has been shown to be expressed in embryonic stem cells, adult germline stem cells and some cancer lines. It has been proposed as a candidate gene to encode transcription factors regulating downstream genes in the human testis with antiapoptotic effects. Its expression in cancer cell lines has implied a similar role in the process of tumorigenesis. The human breast cancer cell lines MDA-MB-231 and MCF-7 were cultured in DMEM medium and transfected with a pGFP-V-RS plasmid bearing an RHOXF1 specific shRNA. Quantitative real-time RT-PCR was performed for RHOXF1, CASP8, BCL2 and HPRT genes. Decreased RHOXF1 expression was confirmed in cells after transfection. shRNA knock down of RHOXF1 resulted in significantly decreased BCL2 expression in both cell lines but no change in CASP8 expression. shRNA targeting RHOXF1 was shown to specifically mediate RHOXF1 gene silencing, so RHOXF1 can mediate transcriptional activation of the BCL2 in cancers and may render tumor cells resistant to apoptotic cell death induced by anticancer therapy. shRNA mediated knock down of RHOXF1 can be effective in induction of apoptotic pathway in cancer cells via BCL2 downregulation, so it can have potential therapeutic utility for human breast cancer.