• Title/Summary/Keyword: human pose

Search Result 342, Processing Time 0.028 seconds

Feature Extraction Based on Hybrid Skeleton for Human-Robot Interaction (휴먼-로봇 인터액션을 위한 하이브리드 스켈레톤 특징점 추출)

  • Joo, Young-Hoon;So, Jea-Yun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.2
    • /
    • pp.178-183
    • /
    • 2008
  • Human motion analysis is researched as a new method for human-robot interaction (HRI) because it concerns with the key techniques of HRI such as motion tracking and pose recognition. To analysis human motion, extracting features of human body from sequential images plays an important role. After finding the silhouette of human body from the sequential images obtained by CCD color camera, the skeleton model is frequently used in order to represent the human motion. In this paper, using the silhouette of human body, we propose the feature extraction method based on hybrid skeleton for detecting human motion. Finally, we show the effectiveness and feasibility of the proposed method through some experiments.

Development of a Cost-Effective Tele-Robot System Delivering Speaker's Affirmative and Negative Intentions (화자의 긍정·부정 의도를 전달하는 실용적 텔레프레즌스 로봇 시스템의 개발)

  • Jin, Yong-Kyu;You, Su-Jeong;Cho, Hye-Kyung
    • The Journal of Korea Robotics Society
    • /
    • v.10 no.3
    • /
    • pp.171-177
    • /
    • 2015
  • A telerobot offers a more engaging and enjoyable interaction with people at a distance by communicating via audio, video, expressive gestures, body pose and proxemics. To provide its potential benefits at a reasonable cost, this paper presents a telepresence robot system for video communication which can deliver speaker's head motion through its display stanchion. Head gestures such as nodding and head-shaking can give crucial information during conversation. We also can assume a speaker's eye-gaze, which is known as one of the key non-verbal signals for interaction, from his/her head pose. In order to develop an efficient head tracking method, a 3D cylinder-like head model is employed and the Harris corner detector is combined with the Lucas-Kanade optical flow that is known to be suitable for extracting 3D motion information of the model. Especially, a skin color-based face detection algorithm is proposed to achieve robust performance upon variant directions while maintaining reasonable computational cost. The performance of the proposed head tracking algorithm is verified through the experiments using BU's standard data sets. A design of robot platform is also described as well as the design of supporting systems such as video transmission and robot control interfaces.

Reduction of Dioxin-Induced Expression of cyplal Gene through Repression of AhR/Arnt DNA Binding by Mek-1 inhibitor PD98059

  • Park, Hyunsung
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2002.11b
    • /
    • pp.60-66
    • /
    • 2002
  • Aryl hydrocarbons, environmental contaminants accumulate in tissue and pose potential risk in human health. 2,3,7,8-Tertachlorodibenzo-p-dioxin (TCDD) is known as a most potent toxicant among aryl hydrocarbons. TCDD elicits numerous toxic responses in experimental animals and human, including hepatic carcinoma, pulmonary and skin tumor in adult rodents, craniofacial abnormality during mouse embryogenesis, chloracne, reproductive abnormality, immunotoxicity, endocrine effects in exposed humans.(omitted)

  • PDF

Human Activity Recognition using View-Invariant Features and Probabilistic Graphical Models (시점 불변인 특징과 확률 그래프 모델을 이용한 인간 행위 인식)

  • Kim, Hyesuk;Kim, Incheol
    • Journal of KIISE
    • /
    • v.41 no.11
    • /
    • pp.927-934
    • /
    • 2014
  • In this paper, we propose an effective method for recognizing daily human activities from a stream of three dimensional body poses, which can be obtained by using Kinect-like RGB-D sensors. The body pose data provided by Kinect SDK or OpenNI may suffer from both the view variance problem and the scale variance problem, since they are represented in the 3D Cartesian coordinate system, the origin of which is located on the center of Kinect. In order to resolve the problem and get the view-invariant and scale-invariant features, we transform the pose data into the spherical coordinate system of which the origin is placed on the center of the subject's hip, and then perform on them the scale normalization using the length of the subject's arm. In order to represent effectively complex internal structures of high-level daily activities, we utilize Hidden state Conditional Random Field (HCRF), which is one of probabilistic graphical models. Through various experiments using two different datasets, KAD-70 and CAD-60, we showed the high performance of our method and the implementation system.

Keypoints-Based 2D Virtual Try-on Network System

  • Pham, Duy Lai;Ngyuen, Nhat Tan;Chung, Sun-Tae
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.2
    • /
    • pp.186-203
    • /
    • 2020
  • Image-based Virtual Try-On Systems are among the most potential solution for virtual fitting which tries on a target clothes into a model person image and thus have attracted considerable research efforts. In many cases, current solutions for those fails in achieving naturally looking virtual fitted image where a target clothes is transferred into the body area of a model person of any shape and pose while keeping clothes context like texture, text, logo without distortion and artifacts. In this paper, we propose a new improved image-based virtual try-on network system based on keypoints, which we name as KP-VTON. The proposed KP-VTON first detects keypoints in the target clothes and reliably predicts keypoints in the clothes of a model person image by utilizing a dense human pose estimation. Then, through TPS transformation calculated by utilizing the keypoints as control points, the warped target clothes image, which is matched into the body area for wearing the target clothes, is obtained. Finally, a new try-on module adopting Attention U-Net is applied to handle more detailed synthesis of virtual fitted image. Extensive experiments on a well-known dataset show that the proposed KP-VTON performs better the state-of-the-art virtual try-on systems.

A Quantification Method of Human Body Motion Similarity using Dynamic Time Warping for Keypoints Extracted from Video Streams (동영상에서 추출한 키포인트 정보의 동적 시간워핑(DTW)을 이용한 인체 동작 유사도의 정량화 기법)

  • Im, June-Seok;Kim, Jin-Heon
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.1109-1116
    • /
    • 2020
  • The matching score evaluating human copying ability can be a good measure to check children's developmental stages, or sports movements like golf swing and dance, etc. It also can be used as HCI for AR, VR applications. This paper presents a method to evaluate the motion similarity between demonstrator who initiates movement and participant who follows the demonstrator action. We present a quantification method of the similarity which utilizes Euclidean L2 distance of Openpose keypoins vector similarity. The proposed method adapts DTW, thus can flexibly cope with the time delayed motions.

Multi-Scale Deconvolution Head Network for Human Pose Estimation (인체 자세 추정을 위한 다중 해상도 디컨볼루션 출력망)

  • Kang, Won Jun;Cho, Nam Ik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.68-71
    • /
    • 2020
  • 최근 딥러닝을 이용한 인체 자세 추정(human pose estimation) 연구가 활발히 진행되고 있다. 그 중 구조가 간단하면서도 성능이 강력하여 널리 사용되고 있는 딥러닝 네트워크 모델은 이미지 분류(image classification)에 사용되는 백본 네트워크(backbone network)와 디컨볼루션 출력망(deconvolution head network)을 이어 붙인 구조를 갖는다[1]. 기존의 디컨볼루션 출력망은 디컨볼루션 층을 쌓아 낮은 해상도의 특징맵을 모두 높은 해상도로 변환한 후 최종 인체 자세 추정을 하는데 이는 다양한 해상도에서 얻어낸 특징들을 골고루 활용하기 힘들다는 단점이 있다. 따라서 본 논문에서는 매 디컨볼루션 층 이후에 인체 자세 추정을 하여 다양한 해상도에서 연산을 하고 이를 종합하여 최종 인체 자세 추정을 하는 방법을 제안한다. 실험 결과 Res50 과 기존의 디컨볼루션 출력망의 경우 0.717 AP 를 얻었는데 Res101 과 기존의 디컨볼루션 출력망을 사용한 결과 50% 이상의 파라미터 수 증가와 함께 0.727 AP, 즉 0.010AP 의 성능 향상이 이루어졌다. 이에 반해 Res50 에 다중 해상도 디컨볼루션 출력망을 사용한 결과 약 1%의 파라미터 수 증가 만으로 0.720 AP, 즉 0.003 AP 의 성능 향상이 이루어졌다. 이를 통해 디컨볼루션 출력망 구조를 개선하면 매우 적은 파라미터 수 증가 만으로도 인체 자세 추정의 성능을 효과적으로 향상시킬 수 있음을 확인하였다.

  • PDF

Development of Pose-Invariant Face Recognition System for Mobile Robot Applications

  • Lee, Tai-Gun;Park, Sung-Kee;Kim, Mun-Sang;Park, Mig-Non
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.783-788
    • /
    • 2003
  • In this paper, we present a new approach to detect and recognize human face in the image from vision camera equipped on the mobile robot platform. Due to the mobility of camera platform, obtained facial image is small and pose-various. For this condition, new algorithm should cope with these constraints and can detect and recognize face in nearly real time. In detection step, ‘coarse to fine’ detection strategy is used. Firstly, region boundary including face is roughly located by dual ellipse templates of facial color and on this region, the locations of three main facial features- two eyes and mouth-are estimated. For this, simplified facial feature maps using characteristic chrominance are made out and candidate pixels are segmented as eye or mouth pixels group. These candidate facial features are verified whether the length and orientation of feature pairs are suitable for face geometry. In recognition step, pseudo-convex hull area of gray face image is defined which area includes feature triangle connecting two eyes and mouth. And random lattice line set are composed and laid on this convex hull area, and then 2D appearance of this area is represented. From these procedures, facial information of detected face is obtained and face DB images are similarly processed for each person class. Based on facial information of these areas, distance measure of match of lattice lines is calculated and face image is recognized using this measure as a classifier. This proposed detection and recognition algorithms overcome the constraints of previous approach [15], make real-time face detection and recognition possible, and guarantee the correct recognition irregardless of some pose variation of face. The usefulness at mobile robot application is demonstrated.

  • PDF

Head Pose Estimation with Accumulated Historgram and Random Forest (누적 히스토그램과 랜덤 포레스트를 이용한 머리방향 추정)

  • Mun, Sung Hee;Lee, Chil woo
    • Smart Media Journal
    • /
    • v.5 no.1
    • /
    • pp.38-43
    • /
    • 2016
  • As smart environment is spread out in our living environments, the needs of an approach related to Human Computer Interaction(HCI) is increases. One of them is head pose estimation. it related to gaze direction estimation, since head has a close relationship to eyes by the body structure. It's a key factor in identifying person's intention or the target of interest, hence it is an essential research in HCI. In this paper, we propose an approach for head pose estimation with pre-defined several directions by random forest classifier. We use canny edge detector to extract feature of the different facial image which is obtained between input image and averaged frontal facial image for extraction of rotation information of input image. From that, we obtain the binary edge image, and make two accumulated histograms which are obtained by counting the number of pixel which has non-zero value along each of the axes. This two accumulated histograms are used to feature of the facial image. We use CAS-PEAL-R1 Dataset for training and testing to random forest classifier, and obtained 80.6% accuracy.

Fall Detection Based on 2-Stacked Bi-LSTM and Human-Skeleton Keypoints of RGBD Camera (RGBD 카메라 기반의 Human-Skeleton Keypoints와 2-Stacked Bi-LSTM 모델을 이용한 낙상 탐지)

  • Shin, Byung Geun;Kim, Uung Ho;Lee, Sang Woo;Yang, Jae Young;Kim, Wongyum
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.11
    • /
    • pp.491-500
    • /
    • 2021
  • In this study, we propose a method for detecting fall behavior using MS Kinect v2 RGBD Camera-based Human-Skeleton Keypoints and a 2-Stacked Bi-LSTM model. In previous studies, skeletal information was extracted from RGB images using a deep learning model such as OpenPose, and then recognition was performed using a recurrent neural network model such as LSTM and GRU. The proposed method receives skeletal information directly from the camera, extracts 2 time-series features of acceleration and distance, and then recognizes the fall behavior using the 2-Stacked Bi-LSTM model. The central joint was obtained for the major skeletons such as the shoulder, spine, and pelvis, and the movement acceleration and distance from the floor were proposed as features of the central joint. The extracted features were compared with models such as Stacked LSTM and Bi-LSTM, and improved detection performance compared to existing studies such as GRU and LSTM was demonstrated through experiments.