• 제목/요약/키워드: human T and B cells

검색결과 390건 처리시간 0.029초

동충하초 추출물이 관절염 Synovial Cell에 미치는 영향 (Research on Effects of Cordyceps Sinensis in Arthritis Synovial Cells)

  • 김찬구;노성수;서영배
    • 대한본초학회지
    • /
    • 제22권3호
    • /
    • pp.67-76
    • /
    • 2007
  • Objectives : This study was carried out to know the effect of Cordyceps sinensis(CS) on the immune inflammatory responses of athritis and function. Methodes : To analyse immunomodulatory effects of CS, cytotoxicity and inhibition of proliferation against of synovial cells, gene expression of inflammatory mediators such as TNF-$\alpha$, IL-1$\beta$ and IL-6, DNA-binding activity of $NF-_{k}B$ and AP-1 were measured in vitro. Results : CS didn't show cytotoxicity against human synovial cells and inhibited proliferation of human synovial cells in a dose-dependent manner in combination with rIL-6. CS reduced the gene expression of IL-6 and IL-1$\beta$ in a dose- dependent manner but didn't reduced that of TNF-$\alpha$ in human synovial cells. CS reduced the binding-activity of $NF-_{k}B$ and also reduced that of AP-1 remarkably. Conclusion: We found out that Cordyceps sinensis has immunomodulatory effect of suppressing synovial cells. And Cordyceps sinensis will be used as a stable remedium in the auto-immune disease in the future.

  • PDF

Cell Separation through chemically modified polyurethane membranes

  • Akon Higuchi;Ryoko Hayashi;Yamamiya, Shin-ichi;Hanako Kitamura
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 2004년도 Proceedings of the second conference of aseanian membrane society
    • /
    • pp.55-58
    • /
    • 2004
  • Cell separation from peripheral blood was investigated using surface-modified polyurethane (PU) membranes with different functional groups. Both red blood cells and platelets could pass through unmodified PU and PU-SO$_3$H membranes, while the red blood cells preferentially passed through PU-N(C$_2$H$_{5}$ )$_2$ and PU-NHC$_2$H$_4$OH membranes. The permeation ratio of T and B cells was less than 25% for the surface-modified and unmodified PU membranes. CD34$^{+}$ cells have been recognized as various kinds of stem cells including hematopoietic and mesenchymal stem cells. The adhesiveness of CD34$^{+}$ cells on the PU membranes was found to be higher than that of red blood cells, platelets, T cells or B cells. Overall, the adhesiveness of blood cells on the PU membranes increased in the following order: red blood cells $\leq$ platelets < T cells $\leq$ B cells < CD34$^{+}$ cells. Treatment of PU-COOH membranes with a human albumin solution to detach adhered blood cells, allowed recovery of mainly CD34$^{+}$ cells in the permeate, while both red blood cells and platelets could be isolated in the permeate using unmodified PU membranes. The PU membranes showed different permeation and recovery ratios of specific cells depending on the functional groups attached to the membranes.mbranes.

  • PDF

The Enhanced Monocyte Adhesiveness after UVB Exposure Requires ROS and NF-κB Signaling in Human Keratinocyte

  • Park, Lee-Jin;Ju, Sung-Mi;Song, Ha-Yong;Lee, Ji-Ae;Yang, Mi-Young;Kang, Young-Hee;Kwon, Hyung-Joo;Kim, Tae-Yoon;Choi, Soo-Young;Park, Jin-Seu
    • BMB Reports
    • /
    • 제39권5호
    • /
    • pp.618-625
    • /
    • 2006
  • The infiltration of both monocyte and activated T cells in the skin is one of critical steps in the development of UVB-induced inflammation. Upregulation of adhesion molecules such as intercellular adhesion molecule 1 (ICAM-1) on the surface of keratinocytes plays an important role in this process. In this study, we examined the molecular mechanism responsible for UVB-induced expression of ICAM-1 and subsequent monocyte adhesion by keratinocyte. We observed that (1) UVB induced protein and mRNA expression of ICAM-1 in a dose- and time-dependent manner in human keratinocyte cell HaCaT; (2) UVB induced the translocation of NF-kappaB and inhibition of NF-kappaB by NF-kappaB inhibitors suppressed UVB-induced mRNA and protein expression of ICAM-1; (3) UVB increased the intracellular level of reactive oxygen species (ROS) by HaCaT cells; (4) UVB-induced increase of intracellular ROS level was suppressed by pre-treatment with diphenyl iodonium (DPI) and N-acetyl cysteine (NAC); and (5) inhibition of UVB-induced ROS production by DPI or NAC suppressed UVB-mediated translocation of NF-kappaB, expression of ICAM-1 and subsequent monocyte adhesion in HaCaT cells. These results suggest that UVB-induced ROS is involved in the translocation of NF-kappaB which is responsible for expression of ICAM-1 and subsequent increased monocyte adhesion in human keratinocyte.

Differential Signaling via Tumor Necrosis Factor-Associated Factors (TRAFs) by CD27 and CD40 in Mouse B Cells

  • Woo, So-Youn;Park, Hae-Kyung;Bishop, Gail A.
    • IMMUNE NETWORK
    • /
    • 제4권3호
    • /
    • pp.143-154
    • /
    • 2004
  • Background: CD27 is recently known as a memory B cell marker and is mainly expressed in activated T cells, some B cell population and NK cells. CD27 is a member of tumor necrosis factor receptor family. Like CD40 molecule, CD27 has (P/S/T/A) X(Q/E)E motif for interacting with TNF receptor-associated factors (TRAFs), and TRAF2 and TRAF5 bindings to CD27 in 293T cells were reported. Methods: To investigate the CD27 signaling effect in B cells, human CD40 extracellular domain containing mouse CD27 cytoplamic domain construct (hCD40-mCD27) was transfected into mouse B cell line CH12.LX and M12.4.1. Results: Through the stimulation of hCD40-mCD27 molecule via anti-human CD40 antibody or CD154 ligation, expression of CD11a, CD23, CD54, CD70 and CD80 were increased and secretion of IgM was induced, which were comparable to the effect of CD40 stimulation. TRAF2 and TRAF3 were recruited into lipid-enriched membrane raft and were bound to CD27 in M12.4.1 cells. CD27 stimulation, however, did not increase TRAF2 or TRAF3 degradation. Conclusion: In contrast to CD40 signaling pathway, TRAF2 and TRAF3 degradation was not observed after CD27 stimulation and it might contribute to prolonged B cell activation through CD27 signaling.

Single-cell RNA sequencing identifies distinct transcriptomic signatures between PMA/ionomycin- and αCD3/αCD28-activated primary human T cells

  • Jung Ho Lee;Brian H Lee;Soyoung Jeong;Christine Suh-Yun Joh;Hyo Jeong Nam;Hyun Seung Choi;Henry Sserwadda;Ji Won Oh;Chung-Gyu Park;Seon-Pil Jin;Hyun Je Kim
    • Genomics & Informatics
    • /
    • 제21권2호
    • /
    • pp.18.1-18.11
    • /
    • 2023
  • Immunologists have activated T cells in vitro using various stimulation methods, including phorbol myristate acetate (PMA)/ionomycin and αCD3/αCD28 agonistic antibodies. PMA stimulates protein kinase C, activating nuclear factor-κB, and ionomycin increases intracellular calcium levels, resulting in activation of nuclear factor of activated T cell. In contrast, αCD3/αCD28 agonistic antibodies activate T cells through ZAP-70, which phosphorylates linker for activation of T cell and SH2-domain-containing leukocyte protein of 76 kD. However, despite the use of these two different in vitro T cell activation methods for decades, the differential effects of chemical-based and antibody-based activation of primary human T cells have not yet been comprehensively described. Using single-cell RNA sequencing (scRNA-seq) technologies to analyze gene expression unbiasedly at the single-cell level, we compared the transcriptomic profiles of the non-physiological and physiological activation methods on human peripheral blood mononuclear cell-derived T cells from four independent donors. Remarkable transcriptomic differences in the expression of cytokines and their respective receptors were identified. We also identified activated CD4 T cell subsets (CD55+) enriched specifically by PMA/ionomycin activation. We believe this activated human T cell transcriptome atlas derived from two different activation methods will enhance our understanding, highlight the optimal use of these two in vitro T cell activation assays, and be applied as a reference standard when analyzing activated specific disease-originated T cells through scRNA-seq.

Cytoprotective Effects of Docosyl Cafferate against tBHP-Induced Oxidative Stress in SH-SY5Y Human Neuroblastoma Cells

  • Choi, Yong-Jun;Kwak, Eun-Bee;Lee, Jae-Won;Lee, Yong-Suk;Cheong, Il-Young;Lee, Hee-Jae;Kim, Sung-Soo;Kim, Myong-Jo;Kwon, Yong-Soo;Chun, Wan-Joo
    • Biomolecules & Therapeutics
    • /
    • 제19권2호
    • /
    • pp.195-200
    • /
    • 2011
  • Neuronal cell death is a common characteristic feature of a variety of neurodegenerative disorders including Alzheimer's disease and Parkinson's disease. However, there have been no effective drugs to successfully prevent neuronal death in those diseases. In the present study, docosyl cafferate (DC), a derivative of caffeic acid, was isolated from Rhus verniciflua and its protective effects on tBHP-induced neuronal cell death were examined in SH-SY5Y human neuroblastoma cells. Pretreatment of DC significantly attenuated tBHP-induced neuronal cell death in a concentration-dependent manner. DC also significantly suppressed tBHP-induced caspase-3 activation. In addition, DC restored tBHP-induced depletion of intracellular Bcl-2, an anti-apoptotic member of the Bcl-2 family. Furthermore, DC significantly suppressed tBHP-induced degradation of IKB, which retains $NF-{\kappa}B$ in the cytoplasm, resulting in the suppression of nuclear translocation of $NF-{\kappa}B$ and its subsequent activation. Taken together, the results clearly demonstrate that DC exerts its neuroprotective activity against tBHP-induced oxidative stress through the suppression of nuclear translocation of $NF-{\kappa}B$.

아토피성 피부질환 동물 모델 NC/Nga 생쥐에서 내재면역 T와 B 세포의 변형 (Alteration of Innate Immune T and B Cells in the NC/Nga Mouse)

  • 김정은;김효정;김태윤;박세호;홍석만
    • IMMUNE NETWORK
    • /
    • 제5권3호
    • /
    • pp.137-143
    • /
    • 2005
  • Background: Millions of people in the world are suffering from atopic dermatitis (AD), which is a chronic inflammatory skin disease triggered by Th2 immune responses. The NC/Nga mouse is the most extensively studied animal model of AD. Like human AD, NC/Nga mice demonstrate increased levels of IgE, a hallmark of Th2 immune responses. Adaptive immunity cannot be generated without help of innate immunity. Especially natural killer T (NKT) cells and marginal zone B (MZB) cells have been known to play important roles in linking innate immunity to adaptive immunity. Methods: Through flow cytometric analysis and ELISA assay, we investigated whether these lymphocytes might be altered in number in NC/Nga mice. Results: Our data demonstrated that the number of NKT cells was reduced in NC/Nga mice and IFN${\gamma}$ production by NKT cells upon ${\alpha}-GalCer$ stimulation decreased to the levels of CD1d KO mice lacking in NKT cells. However, reduction of NKT cells in NC/Nga mice was not due to CD1d expression, which was normal in the thymus. Interestingly, there was a significant increase of $CD1d^{high}B220^+$ cells in the spleen of NC/Nga mice. Further, we confirmed that $CD1d^{high}B220^+$ cells are B cells, not dendritic cells. These $CD1d^{high}B220^+$ B cells show $IgM^{high}CD21^{high}CD23^{low}$, a characteristic phenotype of MZB cells. Conclusion: We provide the evidence that there are decreased activities of NKT cells and increased number of MZB cells in the NC/Nga mice. Our findings may thus explain why NC/Nga mice are susceptible to AD.

3C8, a new monoclonal antibody directed against a follicular dendritic cell line, HK

  • Lee, In Yong;Lee, Joonhee;Park, Weon Seo;Nam, Eui-Cheol;Shin, Yung Oh;Choe, Jongseon
    • IMMUNE NETWORK
    • /
    • 제1권1호
    • /
    • pp.26-31
    • /
    • 2001
  • Background : Follicular dendritic cells (FDCs) play key roles during T cell-dependent humoral immune responses by allowing antigen-specific B cells to survive, proliferate, and differentiate within the FDC networks of secondary follicles, i.e., germinal centers (GC). Methods: A novel monoclonal antibody, 3C8, was generated by immunizing with an FDC line HK, in order to understand the molecular signals involved in the FDC-B cell interactions in the microenvironment of the GC. Results: The 3C8 antibody did not bind to mononuclear cells, including T cells, B cells, and monocytes. Murine L929 and human skin fibroblasts exhibited no or little reactivity to 3C8. However, 3C8 specifically recognized HK cells by flowcytometry. Furthermore, the antigen recognized by 3C8 was restricted to the GC of the human tonsil. Dendritic networks of the GC were intensely stained by 3C8, but cells outside the GC were not. Conclusion: Our results suggest that the antigen 3C8 may play some unique role on FDCs during the GC reactions.

  • PDF

영지(Ganoderma lucidum)의 액체배양에 의한 세포외 다당의 항암활성과 세포증식 및 분화에 미치는 영향 (Antitumor Activity and Effect on Cell Proliferation and Differenciation of Exopolysaccharide Produced by Submerged Cultivation of Ganoderma lucidum)

  • 이신영;강태수;문순옥
    • 산업기술연구
    • /
    • 제25권B호
    • /
    • pp.241-251
    • /
    • 2005
  • Exopolysaccharide (CBP) from submerged culture broth of Ganoderma lucidum mycelium and the water soluble (BWS) and water insoluble (BWI) fractions of CBP were prepared by gel filtration. Antitumor activity and effects on proliferation and differenciation of human cancer cells and mouse NIH 3T3 cells were studied. Cytotoxicity test of CBP, BWS and BWI fractions on human cancer cell lines was performed by using sulforhodamine B (SRB) assay. A549 (lung carcinoma), Colo320 DM and HSR (colon carcinoma), and NIH 3T3 cells were used. BWI fraction showed the strongest cytotoxicity (maximum 20% survival) to all human cells tested. However it did not induced apoptosis. Interestingly BWI fraction did not exert cytotoxic effect on NIH 3T3 cells at low concentration of cells ($5{\times}10^4$) but strong toxic effect at high concentration of cells($5{\times}10^5$) which showed transformed morphology. These results suggest that BWI may have cancer cell specific anticancer activity. However, BWI fraction did not effect the amount of pRb and c-myc protein, which implied that BWI fraction did not act at the early stage of signal transduction pathway. CBP fraction induced differenciation of human leukemic cell line, HL-60 cells suggesting the carcinogenesis prevention of normal cell and possible induction of normalization for cancer cell.

  • PDF

Comparing the Benefits and Drawbacks of Stem Cell Therapy Based on the Cell Origin or Manipulation Process: Addressing Immunogenicity

  • Sung-Ho Chang;Chung Gyu Park
    • IMMUNE NETWORK
    • /
    • 제23권6호
    • /
    • pp.44.1-44.16
    • /
    • 2023
  • Mesenchymal stem cells (MSCs) are effective in treating autoimmune diseases and managing various conditions, such as engraftment of allogeneic islets. Additionally, autologous and HLA-matched allogeneic MSCs can aid in the engraftment of human allogeneic kidneys with or without low doses of tacrolimus, respectively. However, HLA alloantigens are problematic because cell therapy uses more HLA-mismatched allogeneic cells than autologous for convenience and standardization. In particular, HLA-mismatched MSCs showed increased Ag-specific T/B cells and reduced viability faster than HLA-matched MSCs. In CRISPR/Cas9-based cell therapy, Cas9 induce T cell activation in the recipient's immune system. Interestingly, despite their immunogenicity being limited to the cells with foreign Ags, the accumulation of HLA alloantigen-sensitized T/B cells may lead to allograft rejection, suggesting that alloantigens may have a greater scope of adverse effects than foreign Ags. To avoid alloantigen recognition, the β2-microglobulin knockout (B2MKO) system, eliminating class-I MHC, was able to avoid rejection by alloreactive CD8 T cells compared to controls. Moreover, universal donor cells in which both B2M and Class II MHC transactivator (CIITA) were knocked out was more effective in avoiding immune rejection than single KO. However, B2MKO and CIITA KO system remain to be controlled and validated for adverse effects such as the development of tumorigenicity due to deficient Ag recognition by CD8 T and CD4 T cells, respectively. Overall, better HLA-matching or depletion of HLA alloantigens prior to cell therapy can reduce repetitive transplantation through the long-term survival of allogeneic cell therapy, which may be especially important for patients seeking allogeneic transplantation.