Alteration of Innate Immune T and B Cells in the NC/Nga Mouse

아토피성 피부질환 동물 모델 NC/Nga 생쥐에서 내재면역 T와 B 세포의 변형

  • Kim, Jung-Eun (Department of Bioscience and Biotechology, Sejong University) ;
  • Kim, Hyo-Jeong (Department of Bioscience and Biotechology, Sejong University) ;
  • Kim, Tae-Yoon (Laboratory of Dermatology and Immunology, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea) ;
  • Park, Se-Ho (School of Life Sciences and Biotechnology, Korea University) ;
  • Hong, Seok-Mann (Department of Bioscience and Biotechology, Sejong University)
  • 김정은 (세종대학교 공과대학 생명공학과) ;
  • 김효정 (세종대학교 공과대학 생명공학과) ;
  • 김태윤 (가톨릭대학교 의과대학 피부면역학교실) ;
  • 박세호 (고려대학교 생명공학과) ;
  • 홍석만 (세종대학교 공과대학 생명공학과)
  • Published : 2005.09.30

Abstract

Background: Millions of people in the world are suffering from atopic dermatitis (AD), which is a chronic inflammatory skin disease triggered by Th2 immune responses. The NC/Nga mouse is the most extensively studied animal model of AD. Like human AD, NC/Nga mice demonstrate increased levels of IgE, a hallmark of Th2 immune responses. Adaptive immunity cannot be generated without help of innate immunity. Especially natural killer T (NKT) cells and marginal zone B (MZB) cells have been known to play important roles in linking innate immunity to adaptive immunity. Methods: Through flow cytometric analysis and ELISA assay, we investigated whether these lymphocytes might be altered in number in NC/Nga mice. Results: Our data demonstrated that the number of NKT cells was reduced in NC/Nga mice and IFN${\gamma}$ production by NKT cells upon ${\alpha}-GalCer$ stimulation decreased to the levels of CD1d KO mice lacking in NKT cells. However, reduction of NKT cells in NC/Nga mice was not due to CD1d expression, which was normal in the thymus. Interestingly, there was a significant increase of $CD1d^{high}B220^+$ cells in the spleen of NC/Nga mice. Further, we confirmed that $CD1d^{high}B220^+$ cells are B cells, not dendritic cells. These $CD1d^{high}B220^+$ B cells show $IgM^{high}CD21^{high}CD23^{low}$, a characteristic phenotype of MZB cells. Conclusion: We provide the evidence that there are decreased activities of NKT cells and increased number of MZB cells in the NC/Nga mice. Our findings may thus explain why NC/Nga mice are susceptible to AD.

Keywords

References

  1. Leung DY, Boguniewicz M, Howell MD, Nomura I, Hamid QA: New insights into atopic dermatitis. J Clin Invest 113; 651-657, 2004
  2. Heinzmann A, Daser A: Mouse models for the genetic dissection of atopy. Int Arch Allergy Immunol 127;170-180, 2002 https://doi.org/10.1159/000053861
  3. Rousset F, Robert J, Andary M, Bonnin JP, Souillet G, Chretien I, Briere F, Pene J, de Vries JE: Shifts in interleukin- 4 and interferon-gamma production by T cells of patients with elevated serum IgE levels and the modulatory effects of these lymphokines on spontaneous IgE synthesis. J Allergy Clin Immunol 87(1 Pt 1);58-69, 1991 https://doi.org/10.1016/0091-6749(91)90213-8
  4. van der Kleij HP, Kraneveld AD, van Houwelingen AH, Kool M, Weitenberg AC, Redegeld FA, Nijkamp FP: Murine model for non-IgE-mediated asthma. Inflammation 28;115- 125, 2004 https://doi.org/10.1023/B:IFLA.0000039557.33267.65
  5. Matsumoto M, Ra C, Kawamoto K, Sato H, Itakura A, Sawada J, Ushio H, Suto H, Mitsuishi K, Hikasa Y, Matsuda H: IgE hyperproduction through enhanced tyrosine phosphorylation of Janus kinase 3 in NC/Nga mice, a model for human atopic dermatitis. J Immunol 162;1056-1063, 1999
  6. Habu Y, Seki S, Takayama E, Ohkawa T, Koike Y, Ami K, Majima T, Hiraide H: The mechanism of a defective IFNgamma response to bacterial toxins in an atopic dermatitis model, NC/Nga mice, and the therapeutic effect of IFNgamma, IL-12, or IL-18 on dermatitis. J Immunol 166;5439- 5447, 2001 https://doi.org/10.4049/jimmunol.166.9.5439
  7. Vestergaard C, Yoneyama H, Murai M, Nakamura K, Tamaki K, Terashima Y, Imai T, Yoshie O, Irimura T, Mizutani H, Matsushima K: Overproduction of Th2-specific chemokines in NC/Nga mice exhibiting atopic dermatitis-like lesions. J Clin Invest 104;1097-1105, 1999 https://doi.org/10.1172/JCI7613
  8. Mastrandrea F: The potential role of allergen-specific sublingual immunotherapy in atopic dermatitis. Am J Clin Dermatol 5;281-294, 2004 https://doi.org/10.2165/00128071-200405050-00001
  9. Miyamoto K, Miyake S, Yamamura T: A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing TH2 bias of natural killer T cells. Nature 413;531-534, 2001 https://doi.org/10.1038/35097097
  10. Vestergaard C, Yoneyama H, Matsushima K: The NC/Nga mouse: a model for atopic dermatitis. Mol Med Today 6;209-210, 2000 https://doi.org/10.1016/S1357-4310(00)01683-X
  11. Janeway CA Jr, Medzhitov R: Innate immune recognition. Annu Rev Immunol 20;197-216, 2002 https://doi.org/10.1146/annurev.immunol.20.083001.084359
  12. Snapper CM, Yamada H, Smoot D, Sneed R, Lees A, Mond JJ: Comparative in vitro analysis of proliferation, Ig secretion, and Ig class switching by murine marginal zone and follicular B cells. J Immunol 150;2737-2745, 1993
  13. Snapper CM, Yamaguchi H, Moorman MA, Mond JJ: An in vitro model for T cell-independent induction of humoral immunity. A requirement for NK cells. J Immunol 152;4884- 4892, 1994
  14. Zeng D, Lewis D, Dejbakhsh-Jones S, Lan F, Garcia-Ojeda M, Sibley R, Strober S: Bone marrow NK1.1(-) and NK1.1 (+) T cells reciprocally regulate acute graft versus host disease. J Exp Med 189;1073-1081, 1999 https://doi.org/10.1084/jem.189.7.1073
  15. Laloux V, Beaudoin L, Jeske D, Carnaud C, Lehuen A: NK T cell-induced protection against diabetes in V alpha 14-J alpha 281 transgenic nonobese diabetic mice is associated with a Th2 shift circumscribed regionally to the islets and functionally to islet autoantigen. J Immunol 166;3749-3756, 2001 https://doi.org/10.4049/jimmunol.166.6.3749
  16. Hammond KJ, Poulton LD, Palmisano LJ, Silveira PA, Godfrey DI, Baxter AG: Alpha/beta-T cell receptor (TCR)+ CD4-CD8- (NKT) thymocytes prevent insulin-dependent diabetes mellitus in nonobese diabetic (NOD)/Lt mice by the influence of interleukin (IL)-4 and/or IL-10. J Exp Med 187;1047-1056, 1998 https://doi.org/10.1084/jem.187.7.1047
  17. Hong S, Wilson MT, Serizawa I, Wu L, Singh N, Naidenko OV, Miura T, Haba T, Scherer DC, Wei J, Kronenberg M, Koezuka Y, Van Kaer L: The natural killer T-cell ligand alpha-galactosylceramide prevents autoimmune diabetes in non-obese diabetic mice. Nat Med 7;1052-1056, 2001 https://doi.org/10.1038/nm0901-1052
  18. Mendiratta SK, Martin WD, Hong S, Boesteanu A, Joyce S, Van Kaer L: CD1d1 mutant mice are deficient in natural T cells that promptly produce IL-4. Immunity 6;469-477, 1997 https://doi.org/10.1016/S1074-7613(00)80290-3
  19. Makowska A, Faizunnessa NN, Anderson P, Midtvedt T, Cardell S: CD1high B cells: a population of mixed origin. Eur J Immunol 29;3285-3294, 1999 https://doi.org/10.1002/(SICI)1521-4141(199910)29:10<3285::AID-IMMU3285>3.0.CO;2-P
  20. Martin F, Kearney JF: Marginal-zone B cells. Nat Rev Immunol 2;323-335, 2002 https://doi.org/10.1038/nri799
  21. Olobo JO, Reid GD, Githure JI, Anjili CO: IFN-gamma and delayed-type hypersensitivity are associated with cutaneous leishmaniasis in vervet monkeys following secondary rechallenge with Leishmania major. Scand J Immunol Suppl 11; 48-52, 1992
  22. Taniguchi M, Seino K, Nakayama T: The NKT cell system: bridging innate and acquired immunity. Nat Immunol 4;1164-1165, 2003 https://doi.org/10.1038/ni1203-1164
  23. Brossay L, Jullien D, Cardell S, Sydora BC, Burdin N, Modlin RL, Kronenberg M: Mouse CD1 is mainly expressed on hemopoietic-derived cells. J Immunol 159;1216-1224, 1997
  24. Porcelli SA, Modlin RL: The CD1 system: antigen-presenting molecules for T cell recognition of lipids and glycolipids. Annu Rev Immunol 17;297-329, 1999 https://doi.org/10.1146/annurev.immunol.17.1.297
  25. Liu YJ: IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu Rev Immunol 23;275-306, 2005 https://doi.org/10.1146/annurev.immunol.23.021704.115633
  26. Nikolic T, Dingjan GM, Leenen PJ, Hendriks RW: A subfraction of B220(+) cells in murine bone marrow and spleen does not belong to the B cell lineage but has dendritic cell characteristics. Eur J Immunol 32;686-692, 2002 https://doi.org/10.1002/1521-4141(200203)32:3<686::AID-IMMU686>3.0.CO;2-I
  27. Nakano H, Yanagita M, Gunn MD: CD11c(+)B220(+)Gr-1 (+) cells in mouse lymph nodes and spleen display characteristics of plasmacytoid dendritic cells. J Exp Med 194; 1171-1178, 2001 https://doi.org/10.1084/jem.194.8.1171
  28. Shiohara T, Hayakawa J, Mizukawa Y: Animal models for atopic dermatitis: are they relevant to human disease? J Dermatol Sci 36;1-9, 2004 https://doi.org/10.1016/j.jdermsci.2004.02.013
  29. Hashizume H, Horibe T, Yagi H, Seo N, Takigawa M: Compartmental imbalance and aberrant immune function of blood CD123+ (plasmacytoid) and CD11c+ (myeloid) dendritic cells in atopic dermatitis. J Immunol 174;2396-2403, 2005 https://doi.org/10.4049/jimmunol.174.4.2396
  30. Takahashi T, Nakamura K, Chiba S, Kanda Y, Tamaki K, Hirai H: V alpha 24+ natural killer T cells are markedly decreased in atopic dermatitis patients. Hum Immunol 64;586-592, 2003 https://doi.org/10.1016/S0198-8859(03)00066-1
  31. Wither JE, Roy V, Brennan LA. Activated B cells express increased levels of costimulatory molecules in young autoimmune NZB and (NZB$\times$NZW)F(1) mice. Clin Immunol 94;51-63, 2000 https://doi.org/10.1006/clim.1999.4806