• Title/Summary/Keyword: housing strength

Search Result 226, Processing Time 0.022 seconds

Recycled Polypropylene (PP) - Wood Saw Dust (WSD) Composites : The Effect of Acetylation on Mechanical and Water Absorption Properties

  • Khalil, H.P.S.A.;Shahnaz, S.B. Sharifah;Ratnam, M.M.;Issam, A.M;Ahmad, Faiz;Fuaad, N.A Nik
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.10-21
    • /
    • 2006
  • Recycled polypropylene (RPP) - Wood Saw Dust (WSD) composites with and without acetylation of filler were produced at different filler loading (15%, 25%, 35% and 45% w/w) and filler size (300, 212 and $100{\mu}m$). The RPP-WSD was compounded using a Haake Rheodrive 500 twin screw compounder at $190^{\circ}C$ at 8 MPa for 30 minutes. The mechanical properties and water absorption properties of modified and unmodified WSD-PP composites were investigated. Acetylation of WSD improved the mechanical and water absorption characteristic of composites. The decrease of filler size (300 to $100{\mu}m$) of the unmodified and acetylated WSD showed increase of tensile strength and impact properties. The composites exhibited higher tensile modulus properties as the filler loading increased (15% to 45%). However tensile strength, elongation at break and impact strength showed the opposite phenomenon. Water absorption increased as the mesh number and filler loading increased. With acetylation, lower moisture absorption was observed as compared to unmodified WSD. The failure mechanism from impact fracture of the filler-matrix interface with and without acetylation was analyzed using Scanning Electron Microscope (SEM).

Studies on the Durable Properties of Fiber Reinforced Porous Concrete Using Polymer (강섬유보강 폴리머 포러스콘크리트의 내구특성에 관한 연구)

  • Kim, Bong-Kyun;Park, Seong-Bum;Seo, Dae-Seuk;Lee, Byung-Jae;Kim, Jung-Hee
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.565-568
    • /
    • 2006
  • This study evaluates the physical mchanical properties, durability of porous concrete for pavement according to content of polymer and steel fiber to elicit the presentation of data and the way to enhance its function for the practical field application of porous concrete as a material of pavement. The results of the test indicate that in every condition, the void ratio and the coefficient of water permeability of porous concrete for pavement satisfy both the domestic standards and proposition values. Among the properties of strength, the compressive strength satisfies the standards in the specification of Korea National Housing Corporation as for every factor of mixture but in the case of the flexural strength, more than 0.6Vol.% of steel fiber satisfied the Japan Concrete Institute proposition values. The case when 0.6Vol.% of steel fiber and 10Wt.% of polymer are used at the same time shows that the loss rate of mass by Cantabro test became 36.7% better and freeze-thaw resistance became 33% better.

  • PDF

Novel approach to improve nano green mortar behaviour using nano-paper waste with nano-metakaolin

  • Radwa Defalla Abdel, Hafez;Bassam A., Tayeh;Raghda Osama Abd-Al, Ftah;Khaled, Abdelsamie
    • Advances in concrete construction
    • /
    • v.14 no.5
    • /
    • pp.341-354
    • /
    • 2022
  • Treatment of solid waste building materials is a crucial method of disposal and an area of ongoing research. New standards for the treatment of solid waste building materials are necessary due to multisource features, huge quantities, and complicated compositions of solid waste. In this research, sustainable nanomaterial mixtures containing nano-paper waste (NPW) and nano-metakaolin (NMK) were used as a substitute for Portland cement. Portland cement was replaced with different ratios of NPW and NMK (0%, 4%, 8%, and 12% by weight of cement) while the cement-to-water ratio remained constant at 0.4 in all mortar mixtures. The fresh properties had a positive effect on them, and with the increase in the percentage of replacement, the fresh properties decreased. The results of compressive strength at 7 and 28 days and flexural strength at 28 days show that the nanomaterials improved the strength, but the results of NMK were better than those of NPW. The best replacement rate was 8%, followed by 4%, and finally 12% for both materials. The combination of NMK and NPW as a replacement (12% NMK + 12% NPW) showed less shrinkage than the others because of the high pozzolanic reactivity of the nanomaterials. The combination of NMK and NPW improved the microstructure by increasing the hydration volume and lowering the water in the cement matrix, as clearly observed in the C-S-H decomposition.

Seismic Performance of Special Shear Wall with Modified Details in Boundary Element Depending on Axial Load Ratio (축력비에 따른 수정된 단부 횡보강상세를 갖는 특수전단벽의 내진성능)

  • Chun, Young-Soo;Park, Ji-Young
    • Land and Housing Review
    • /
    • v.7 no.1
    • /
    • pp.31-41
    • /
    • 2016
  • In this paper, we propose experimental results, which target the major variables that influence the structural performance of a wall, as well as the resulting seismic and hysteretic behavior. Results also provide the basis for the application of performance based design by identifying the nonlinear hysteretic behavior of the wall with boundary element details recently proposed in previous study by Chun et al(2011). From the experimental results, the crack and fracture patterns of a specimen, which adopt the proposed boundary element details, showed similar tendencies regardless of whether axial force or high performance steel bars is applied. Furthermore, results show that the maximum strength of the specimen can be predicted accurately based on the design equation proposed by the standard. In addition, with a higher axial force, there is a tendency that both the initial load and maximum strength increase as deformation capacity reduces, requiring consideration of the reduced deformation capacity due to a high axial force. For walls under such high axial forces, using high performance steel bars is a very effective manner of enhancing deformation capacity. Therefore, reinforcing the plastic hinge region with boundary elements using high performance steel bars is preferable.

Analytical Study on the Pullout Resistance Characteristics of Bored Pile (매입말뚝의 인발저항특성에 관한 연구)

  • Park, Jong-Bae;Chun, Young-Soo
    • Land and Housing Review
    • /
    • v.7 no.4
    • /
    • pp.281-289
    • /
    • 2016
  • Structural experiment result showed that PHC(d=600mm) Pile used as a common compression member could resist 83.6 ~ 91.6 tonf of ultimate tension force, if the adhesion of P.C. bar of PHC pile to the concrete foundation is strengthened. Considering a proper safety factor to ultimate tension strength, PHC pile can substitute the anti-floating anchor, or reduce the number of anchors. For this purpose, pullout resistance behavior of a Bored pile embedded in real ground as well as structural tension strength of PHC pile must be evaluated. This study performed the static pullout tests to evaluate the pullout behavior of bored pile, and compared the test results with design value of side resistance. To evaluate the pullout resistance easily, static pullout test results were compared with dynamic loading test results using PDA. As a result, cement paste of the bored pile was hardened which is after 15 days, LH side resistance design value corresponded well to the Static pullout test results, also to the side resistance evaluated by dynamic loading test.

Comparison of the quantity estimations from the design phase and the settlement quantities of construction field to improve the extra rates of bar splice (철근 이음조정률의 개선을 위한 설계견적 수량과 현장시공 정산 수량의 비교분석 연구)

  • Kim, Sang-Yeon;Choi, Bo-Mi
    • Land and Housing Review
    • /
    • v.8 no.4
    • /
    • pp.257-266
    • /
    • 2017
  • LH has been using ultra high strength reinforcing bars (SD500 and SD600), since 2011. Such a change requires an adjustment of the old extra rates of bar splice to reflect use of ultra high strength reinforcing bars, as these rates had been set based on SD400 bars. It is particularly difficult to calculate precisely rebar lap-splice locations for large areas, such as those in apartment buildings. This research aims to adjust the extra rates of bar splice to reflect a reasonable rate; the rebar lap-splice length is not an exact estimation, but instead, an extra rates of bar splice is set and the rebar lap-splice length is increased by 2% (D 10) - 7% (025) depending on the bar size. The subjects of this study are LH apartments undergoing frame construction. We studied the quantity estimations from the design drawings, and analyzed the settlement quantities of construction field. The results of the study revealed that, when each of the quantities are analyzed, consider adjusting the extra rates of bar splice of some rebar to 1% - 3.5%. This was caused by an overuse of reinforcing bars in onsite construction and the use of supporting bars that have not been reflected in the documents, among other reasons. Based on the results of our study, an improvement plan for the current extra rates of bar splice seems to be necessary, cutting or raising the rate depending on the analysis of the data. Through this study, we expect to contribute to the calculation of reasonable construction costs, improvements in the quality of rebar work, and improvements in the capacity of design techniques for apartment buildings.

Slip Failure Strength of Infilled Concrete with Reinforced PHC Pile by One-Cutting Method (원커팅 철근보강 PHC 말뚝의 속채움 콘크리트 부착파괴 성능)

  • Chun, Young-Soo;Sim, Young-Jong;Park, Jong-Bae
    • Land and Housing Review
    • /
    • v.2 no.4
    • /
    • pp.553-558
    • /
    • 2011
  • Existing method protruding strands that are embedded in PHC pile to connect pile head and foundation slab shows poor constructibility. As this causes crack and damage in pile head and casualties often occurs in construction site during the work, alternative method called one-cutting method, in which pile above the ground surface and strands embedded in pile are completely cut and pile head is reinforced with rebar for connection with foundation slab, is currently adopted. However, the capacity of details for these methods are not mechanically proved. In this study, in order to suggest proper details of reinforcement for one-cutting method, failures due to lack of shear resistance between infilled concrete and PHC pile are analyzed through experiments and embedded depth with infilled concrete inside PHC pile is suggested. Assuming that slip failure strength is 0.4MPa, which is obtained from experiment conservatively, to have rebar yielded before slip failure, minimum depth of infilled concrete for PHC 450 and PHC 500, need to be 600mm above, and for PHC 600, 1,000mm above.

Structural Performance of RC Slab-Wall Joints Reinforced by Welded Deformed Steel Bar Mats (철근격자망을 사용한 슬래브-벽체 접합부의 구조성능)

  • Park, Seong-Sik;Yoon, Young-Ho;Lee, Bum-Sik
    • Land and Housing Review
    • /
    • v.2 no.1
    • /
    • pp.61-68
    • /
    • 2011
  • In order to clarify the structural performances of Welded Deformed Steel Bar Mats (WDSBM), the research stated includes the tests for standard hook of top bars of slab in concrete slab-wall joints, the tests for embedment length of top bar of slab, and the development strength tests for standard hook. The test results are as follows; (1) For slab-wall joints using WDSBM as reinforcement in slab, if the top bars of WDSBM are spliced by ordinary bars with sufficient development length and size, it is enough for the strength and crack control. (2) When WDSBM of slab is spliced in joint, the strength is increased with the embedment of bars of this WDSBM into wall. Beyond peak strength, however, ductility is diminished to that as no splice due to pull-out failure. (3) For slab-wall system, ultimate strain of concrete for flexural compression zone in lower surface of slab seems much greater than that of normal concrete beam. The reason is that normal concrete beam has the joint with $180^{\circ}$, however slab-wall joint has the $90^{\circ}$ of which concrete can be confined.

Effect of Aspect Ratio and Diagonal Reinforcement on Shear Performance of Concrete Coupling Beams Reinforced with High-Strength Steel Bars (세장비 및 대각철근 유무에 따른 고강도 철근보강 콘크리트 연결보의 전단성능)

  • Kim, Sun-Woo;Jang, Seok-Joon;Yun, Hyun-Do;Seo, Soo-Yeon;Chun, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.1
    • /
    • pp.43-51
    • /
    • 2017
  • As per current seismic design codes, diagonally reinforced coupling beams are restricted to coupling beams having aspect ratio below 4. However, a grouped diagonally reinforcement detail makes distribution of steel bars in the beam much harder, furthermore it may result in poor construction quality. This paper describes the experimental results of concrete coupling beam reinforced with high-strength steel bars (SD500 & SD600 grades). In order to improve workability for fabricating coupling beams, a headed large diameter steel bar was used in this study. Two full-scale coupling beams were fabricated and tested with variables of reinforcement details and aspect ratio. To reflect real behavior characteristic of the beam coupling shear walls, a rigid steel frame system with linked joints was set on the reaction floor. As a test result, it was noted that cracking and yielding of reinforcement were initially progressed at the coupling beam-to-shear wall joint, and were progressed to the mid-span of the coupling beam, based on the steel strain and failure modes. It was found that the coupling beams have sufficient deformation capacity for drift ratio of shear wall corresponding to the design displacement in FEMA 450-1. In this study, the headed horizontal steel bar was also efficient for coupling beams to exhibit shear performance required by seismic design codes. For detailed design for coupling beam reinforced with high-strength steel, however, research about the effect of variable aspect ratios on the structural behavior of coupling beam is suggested.

Evaluation on In-plane Shear Strength of Lightweight Composite Panels (경량 복합패널의 면내 전단 성능 평가)

  • Hwang, Moon-Young;Kang, Su-Min;Lee, Byung-yun;Kim, Sung-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.9-20
    • /
    • 2019
  • The number of natural disasters in Korea, such as earthquakes, is increasing. As a result, there is growing need for temporary residences or shelters for disaster conditions. The aim of this study was to produce post-disaster refugees housing differentiated from existing shelters using lightweight composite panels. To accomplish this, the structural performance of lightweight composite panels was validated, and an in-plane shear strength test was conducted according to the ASTM E72 criteria among the performance test methods for panels. As a result of the experiment, the maximum load for each specimen under an in-plane shear load was determined. All the experiments ended with the tear of the panel's skin section. The initial stiffness of the specimens was consistent with that predicted by the calculations. On the other hand, local crushing and tearing, as well as the characteristics of the panel, resulted in a decrease in stiffness and final failure. Specimens with an opening showed a difference in stiffness and strength from the basic experiment. The maximum load and the effective area were found to be proportional. Through this process, the allowable shear stress of the specimens was calculated and the average allowable shear stress was determined. The average ultimate shear stress of the lightweight composite panels was found to be $0.047N/mm^2$, which provides a criterion of judgement that could be used to expect the allowable load of lightweight composite panels.