References
- Abu Al-Rub, R.K., Tyson, B.M., Yazdanbakhsh, A. and Grasley, Z. (2012), "Mechanical properties of nanocomposite cement incorporating surface-treated and untreated carbon nanotubes and carbon nanofibers", J. Nanomech. Micromech., 2(1), 1-6. https://doi.org/10.1061/(ASCE)NM.2153-5477.0000041
- Ahmad, J., Aslam, F., Martinez-Garcia, R., de-Prado-Gil, J., Qaidi, S. and Brahmia, A. (2021), "Effects of waste glass and waste marble on mechanical and durability performance of concrete", Scientific Reports, 11(1), 1-17. http://dx.doi: 10.1038/s41598-021-00994-0
- Ahmed, H.U., Mohammed, A.S., Faraj, R.H., Qaidi, S.M. and Mohammed, A.A. (2022), "Compressive strength of geopolymer concrete modified with nano-silica: Experimental and modeling investigations", Case Studies Constr. Mater., 16, e01036. http://dx.doi.org/10.1016/j.cscm.2022.e01036
- Akinwumi, I.I., Olatunbosun, O.M., Olofinnade, O.M. and Awoyera, P.O. (2014), "Structural evaluation of lightweight concrete produced using waste newspaper and office paper", Civil Environ. Res., 6(7), 160-167.
- Al-Rifaie, W.N. and Ahmed, W.K. (2016), "Effect of nanomaterials in cement mortar characteristics", J. Eng. Sci. Technol., 11(9), 1321-1332.
- Ali, A., Hashmi, H.N. and Baig, N. (2013), "Treatment of the paper mill effluent - A review", Annals Faculty Eng. Hunedoara, 11(3), 337. https://doi.org/10.1016/S0960-8524(00)00060-2
- Amaral, L.F., Delaqua, G.C.G., Nicolite, M., Marvila, M.T., de Azevedo, A.R., Alexandre, J., Vieira, C.M.F. and Monteiro, S.N. (2020), "Eco-friendly mortars with addition of ornamental stone waste-A mathematical model approach for granulometric optimization", J. Cleaner Product., 248, 119283. https://doi.org/10.1016/j.jclepro.2019.119283
- ASTM 150-04 (2004), Standard Specification for Portland Cement, Annual Book of ASTM Standards 4.
- Azar, J.P., Najarchi, M., Sanaati, B., Najafizadeh, M.M. and Mirhosseini, S.M. (2019), "The Experimental Assessment of the Effect of Paper Waste Ash and Silica Fume on Improvement of Concrete Behavior", KSCE J. Civil Eng., 23(10), 4503-4515. https://doi.org/10.1007/s12205-019-0678-x
- BSI (2005), BS EN 196-1: Methods of testing cement. Determination of strength, BSI London, UK.
- Cardoza, C., Nagtode, V., Pratap, A. and Mali, S.N. (2022), "Emerging Applications of Nanotechnology in Cosmeceutical Health Science: Latest Updates", Health Sciences Review, p. 100051. https://doi.org/10.1016/j.hsr.2022.100051
- Edalat-Behbahani, A., Soltanzadeh, F., Emam-Jomeh, M. and Soltan-Zadeh, Z. (2021), "Sustainable approaches for developing concrete and mortar using waste seashell", Eur. J. Environ. Civil Eng., 25(10), 1874-1893. https://doi.org/10.1080/19648189.2019.1607780
- EN (2002), Mixing water for concrete, British Standard Institution London, UK.
- EN 196-1 (2005), Methods of testing cement: Determination of strength, British Standard Institution, London, UK.
- Fan, Y.F., Zhang, S.Y. and Shah, S.P. (2016), "Influence of nanoclay on concrete subjected to freeze-thaw cycles and bond behavior between rebar and concrete", In: Key Engineering Materials, Vol. 711, pp. 256-262. https://doi.org/10.4028/www.scientific.net/KEM.711.256
- Faraj, R.H., Ahmed, H.U., Rafiq, S., Sor, N.H., Ibrahim, D.F. and Qaidi, S.M. (2022), "Performance of Self-Compacting Mortars Modified with Nanoparticles: A Systematic Review and Modeling", Cleaner Materials, p. 100086. https://doi.org/10.1016/j.clema.2022.100086
- Farzadnia, N., Noorvand, H., Yasin, A.M. and Aziz, F.N.A. (2015), "The effect of nano silica on short term drying shrinkage of POFA cement mortars", Constr. Build. Mater., 95, 636-646. https://doi.org/10.1016/j.conbuildmat.2015.07.132
- Haruehansapong, S., Pulngern, T. and Chucheepsakul, S. (2017), "Effect of nanosilica particle size on the water permeability, abrasion resistance, drying shrinkage, and repair work properties of cement mortar containing nano-SiO2", Adv. Mater. Sci. Eng. https://doi.org/10.1155/2017/4213690
- Hornyak, G.L., Moore, J.J., Tibbals, H.F. and Dutta, J. (2018), Fundamentals of Nanotechnology, CRC press. https://doi.org/10.1201/9781315222561
- Hosan, A., Shaikh, F.U.A., Sarker, P. and Aslani, F. (2021), "Nano-and micro-scale characterisation of interfacial transition zone (ITZ) of high volume slag and slag-fly ash blended concretes containing nano SiO2 and nano CaCO3", Constr. Build. Mater., 269, 121311. https://doi.org/10.1016/j.conbuildmat.2020.121311
- Inkson, B.J. (2016), "Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for materials characterization", In: Materials Characterization using Nondestructive Evaluation (NDE) Methods, pp. 17-43. https://doi.org/10.1016/B978-0-08-100040-3.00002
- Itim, A., Ezziane, K. and Kadri, E.H. (2011), "Compressive strength and shrinkage of mortar containing various amounts of mineral additions", Constr. Build. Mater., 25(8), 3603-3609. https://doi.org/10.1016/j.conbuildmat.2011.03.055
- Jaradat, O.Z., Gadri, K., Tayeh, B.A. and Guettalaa, A. (2021), "Influence of sisal fibres and rubber latex on the engineering properties of sand concrete", Struct. Eng. Mech., Int. J., 80(1), 47-62. https://doi.org/10.12989/sem.2021.80.1.047
- Kaufman, S.M. and Themelis, N.J. (2009), "Using a direct method to characterize and measure flows of municipal solid waste in the United States", J. Air Waste Manage. Assoc., 59(12), 1386-1390. https://doi.org/10.3155/1047-3289.59.12.1386
- Konsta-Gdoutos, M.S., Metaxa, Z.S. and Shah, S.P. (2010), "Highly dispersed carbon nanotube reinforced cement based materials", Cement Concrete Res., 40(7), 1052-1059. https://doi.org/10.1016/j.cemconres.2010.02.015
- Lv, S., Ma, Y., Qiu, C., Sun, T., Liu, J. and Zhou, Q. (2013), "Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites", Constr. Build. Mater., 49, 121-127. https://doi.org/10.1016/j.conbuildmat.2013.08.022
- Ma, P.C., Mo, S.Y., Tang, B.Z. and Kim, J.K. (2010), "Dispersion, interfacial interaction and re-agglomeration of functionalized carbon nanotubes in epoxy composites", Carbon, 48(6), 1824-1834. https://doi.org/10.1016/j.carbon.2010.01.028
- Mansi, A., Sor, N.H., Hilal, N. and Qaidi, S.M. (2022), "The impact of nano clay on normal and high-performance concrete characteristics: a review", IOP Conference Series: Earth and Environmental Science, Vol. 961, No. 1, p. 012085. https://doi.org/10.1088/1755-1315/961/1/012085
- Mastronardi, E., Tsae, P., Zhang, X., Monreal, C. and DeRosa, M.C. (2015), "Strategic role of nanotechnology in fertilizers: potential and limitations", Nanotechnol. Food Agricul., pp. 25-67. https://doi.org/10.1007/978-3-319-14024-7_2
- Mohammadhosseini, H., Lim, N.H.A.S., Tahir, M.M., Alyousef, R., Alabduljabbar, H. and Samadi, M. (2019), "Enhanced performance of green mortar comprising high volume of ceramic waste in aggressive environments", Construction and Building Materials, 212, 607-617. https://doi.org/10.1016/j.conbuildmat.2019.04.024
- Monteiro, P.J., Kirchheim, A.P., Chae, S., Fischer, P., MacDowell, A.A., Schaible, E. and Wenk, H.R. (2009), "Characterizing the nano and micro structure of concrete to improve its durability", Cement Concrete Compos., 31(8), 577-584. https://doi.org/10.1016/j.cemconcomp.2008.12.007
- Morsy, M.S., Al-Salloum, Y.A., Abbas, H. and Alsayed, S.H. (2012), "Behavior of blended cement mortars containing nanometakaolin at elevated temperatures", Constr. Build. Mater., 35, 900-905. https://doi.org/10.1016/j.conbuildmat.2012.04.099
- Morsy, M.S., Al-Salloum, Y., Almusallam, T. and Abbas, H. (2014), "Effect of nano-metakaolin addition on the hydration characteristics of fly ash blended cement mortar", J. Thermal Analy. Calorimetry, 116(2), 845-852. https://doi.org/10.1007/s10973-013-3512-6
- Paul, S.C., Van Rooyen, A.S., van Zijl, G.P. and Petrik, L.F. (2018), "Properties of cement-based composites using nanoparticles: A comprehensive review", Constr. Build. Mater., 189, 1019-1034. https://doi.org/10.1016/j.conbuildmat.2018.09.062
- Pillay, D.L., Olalusi, O.B. and Mostafa, M.M. (2021), "A review of the engineering properties of concrete with paper mill waste ash-towards sustainable rigid pavement construction", Silicon, 13(9), 3191-3207. https://doi.org/10.1007/s12633-020-00664-2
- Qian, X., Wang, J., Wang, L. and Fang, Y. (2019), "Enhancing the performance of metakaolin blended cement mortar through in-situ production of nano to sub-micro calcium carbonate particles", Constr. Build. Mater., 196, 681-691. https://doi.org/10.1016/j.conbuildmat.2018.11.134
- Raheem, A.A., Abdulwahab, R. and Kareem, M.A. (2021), "Incorporation of metakaolin and nanosilica in blended cement mortar and concrete-A review", J. Cleaner Product., 125852. https://doi.org/10.1016/j.jclepro.2021.125852
- Samadi, M., Huseien, G.F., Mohammadhosseini, H., Lee, H.S., Lim, N.H.A.S., Tahir, M.M. and Alyousef, R. (2020), "Waste ceramic as low cost and eco-friendly materials in the production of sustainable mortars", J. Cleaner Product., 266, 121825. https://doi.org/10.1016/j.jclepro.2020.121825
- Shanmugavadivu, V., Karthikeyan, B. and Dhinakaran, G. (2014), "Mechanical properties and micro-structure analysis of high-strength concrete with nano-metakaolin", Int. J. Applied Eng. Res., 9, 4093-4106. https://doi.org/10.1063/1.5011540
- Shebl, S., Allie, L., Morsy, M. and Aglan, H.A. (2009), "Mechanical behavior of activated nano silicate filled cement binders", J. Mater. Sci., 44(6), 1600-1606. https://doi.org/10.1007/s10853-008-3214-9
- Staley, B.F. and Barlaz, M.A. (2009), "Composition of municipal solid waste in the United States and implications for carbon sequestration and methane yield", J. Environ. Eng., 135(10), 901-909. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000032
- Standard, A. (2007), "C1437: Standard Test Method for Flow of Hydraulic Cement Mortar", Annual Book of ASTM Standards. https://doi.org/10.1520/C1437-20
- Standard, A. (2013), "C192: Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory", Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA, USA. https://doi.org/10.1520/C0192_C0192M-15
- Sumesh, M., Alengaram, U.J., Jumaat, M.Z., Mo, K.H. and Alnahhal, M.F. (2017), "Incorporation of nano-materials in cement composite and geopolymer based paste and mortar-A review", Constr. Build. Mater., 148, 62-84. https://doi.org/10.1016/j.conbuildmat.2017.04.206
- Tahwia, A.M., Heniegal, A., Elgamal, M.S. and Tayeh, B.A. (2021), "The prediction of compressive strength and nondestructive tests of sustainable concrete by using artificial neural networks", Comput. Concrete, Int. J., 27(1), 21-28. https://doi.org/10.12989/cac.2021.27.1.021
- Tang, C.Y. and Yang, Z. (2017), Transmission electron microscopy (TEM), In: Membrane Characterization, pp. 145-159.
- Tayeh, B.A. and Magbool, H.M. (2021), "Influence of substrate roughness and bonding agents on the bond strength between old and new concrete", Adv. Concrete Constr., Int. J., 12(1), 33-45. https://doi.org/10.12989/acc.2021.12.1.033
- Tayeh, B.A., Ibrahim, O. and Mohamed, O. (2020), "Combined effect of lightweight fine aggregate and micro rubber ash on the properties of cement mortar", Adv. Concrete Constr., Int. J., 10(6), 537-546. https://doi.org/10.12989/acc.2020.10.6.537
- Tayeh, B.A., Hadzima-Nyarko, M., Zeyad, A.M. and Al-Harazin, S.Z. (2021a), "Properties and durability of concrete with olive waste ash as a partial cement replacement", Adv. Concrete Constr., Int. J., 11(1), 59-71. https://doi.org/10.12989/acc.2021.11.1.059
- Tayeh, B.A., Yousif, S.T., Abu Bakar, B.H., Al-Tayeb, M.M., Abdul-Razzak, A.A. and Haido, J.H. (2021b), "Dynamic response of reinforced concrete members incorporating steel fibers with different aspect ratios", Adv. Concrete Constr., Int. J., 11(2), 89-98. https://doi.org/10.12989/acc.2021.11.2.089
- Wallbaum, H. and Buerkin, C. (2003), "Concepts and instruments for a sustainable construction sector", Indust. Environ., 26(2), 53-57.
- Winey, M., Meehl, J.B., O'Toole, E.T. and Giddings Jr, T.H. (2014), "Conventional transmission electron microscopy", Molecul. Biol. Cell, 25(3), 319-323. https://doi.org/10.1091/mbc.E12-12-0863
- Xiao, H., Zhang, F., Liu, R., Zhang, R., Liu, Z. and Liu, H. (2019), "Effects of pozzolanic and non-pozzolanic nanomaterials on cement-based materials", Constr. Build. Mater., 213, 1-9. https://doi.org/10.1016/j.conbuildmat.2019.04.057
- Xiaoyu, G., Yingfang, F. and Haiyang, L. (2018), "The compressive behavior of cement mortar with the addition of nano metakaolin", Nanomater. Nanotechnol., 8, 1847980418755599. https://doi.org/10.1177/1847980418755599
- Xie, J., Zhang, H., Duan, L., Yang, Y., Yan, J., Shan, D., Liu, X., Pang, J., Chen, Y., Li, X. and Zhang, Y. (2020), "Effect of nano metakaolin on compressive strength of recycled concrete", Constr. Build. Mater., 256, 119393. https://doi.org/10.1016/j.conbuildmat.2020.119393
- Yazdanbakhsh, A., Grasley, Z.C., Tyson, B. and Al-Rub, R.A. (2009), "Carbon nano filaments in cementitious materials: some issues on dispersion and interfacial bond", ACI Special Publication, 267, 21-34. https://doi.org/10.14359/51663280
- Yazdanbakhsh, A., Grasley, Z., Tyson, B. and Al-Rub, R.K.A. (2010), "Distribution of carbon nanofibers and nanotubes in cementitious composites", Transport. Res. Record, 2142(1), 89-95. https://doi.org/10.3141/2142-13
- Zhan, P.M., He, Z.H., Ma, Z.M., Liang, C.F., Zhang, X.X., Abreham, A.A. and Shi, J.Y. (2020), "Utilization of nanometakaolin in concrete: A review", J. Build. Eng., 30, 101259. https://doi.org/10.1016/j.jobe.2020.101259