• Title/Summary/Keyword: hot extrusion method

Search Result 54, Processing Time 0.024 seconds

Automated Design of Forward Extrusion Die by AutoLISP Language (AutoLISP을 이용한 전방압출 금형의 자동설계 연구)

  • 김종호;류호연;홍기곤
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.584-588
    • /
    • 1997
  • Lots of forginfs used in automobile and aerospce industries are made in hot or cold working conditions, depending on the size and shape of a product. Usually the die design for new items has been first made on the basis of experiences and many know-hows accumulated in the company and then slightly modified through trial and error method to get the desired forgings without defects. Most of drawings at the die design stage have been manually drawn, butrecently some of forging companies have begun to apply a computer-aided drafting technique to the die design for reducing drafting time as well as repeatedly utilizing standardized parts form registerd data base. In this paper the automated die design technique for forward extrusion of axisymmetric forgings is developed by using AutoLISP language. For this study the representative die system is determined form the investigation of several types of forging dies being currently employed in the metal forming field and the design rules for cold extrusion die are summarized and programmed on a personal computer. A few design examples of forward extrusion die are given and discusses.

  • PDF

Fabrication of Nano-composites from the Radix of Angelica gigas Nakai by Hot Melt Extrusion Mediated Polymer Matrixs (중합체 매개 용융압출에 의한 참당귀 나노복합체의 제조)

  • Azad, Md Obyedul Kalam;Cho, Hyun Jong;Lim, Jung Dae;Park, Cheol Ho;Kang, Wie Soo
    • Korean Journal of Medicinal Crop Science
    • /
    • v.26 no.5
    • /
    • pp.417-429
    • /
    • 2018
  • Background: The objective of this study was to make colloidal dispersions of the active compounds of radix of Angelica gigas Nakai that could be charaterized as nano-composites using hot melt extrusion (HME). Food grade hydrophilic polymer matrices were used to disperse these compound in aqueous media. Methods and Results: Extrudate solid formulations (ESFs) mediated by various HPMCs (hydroxypropyl methylcelluloses) and Na-Alg polymers made from ultrafine powder of the radix of Angelica gigas Nakai were developed through a physical crosslink method (HME) using an ionization agent (treatment with acetic acid) and different food grade polymers [HPMCs, such as HP55, CN40H, AN6 and sodium alignate (Na-Alg)]. X-ray powder diffraction (XRD) analysis confirmed the amorphization of crystal compounds in the HP55-mediated extrudate solid formulation (HP55-ESF). Differential scanning calorimetry (DSC) analysis indicated a lower enthalpy (${\Delta}H=10.62J/g$) of glass transition temperature (Tg) in the HP55-ESF than in the other formulations. Infrared fourier transform spectroscopy (FT-IR) revealed that new functional groups were produced in the HP55-ESF. The content of phenolic compounds, flavonoid (including decursin and decursinol angelate) content, and antioxidant activity increased by 5, 10, and 2 times in the HP55-ESF, respectively. The production of water soluble (61.5%) nano-sized (323 nm) particles was achieved in the HP55-ESF. Conclusions: Nano-composites were developed herein utilizing melt-extruded solid dispersion technology, including food grade polymer enhanced nano dispersion (< 500 nm) of active compounds from the radix of Angelica gigas Nakai with enhanced solubility and bioavailability. These nano-composites of the radix of Angelica gigas Nakai can be developed and marketed as products with high therapeutic performance.

Enhancement of Solubility and Nanonization of Phenolic Compound in Extrudate from Angelica gigas Nakai by Hot Melt Extrusion using Surfactant (유화제 첨가 용융압출을 이용한 참당귀 성형체의 페놀성분 나노화 및 용해도 향상)

  • Azad, Md Obyedul Kalam;Cho, Hyun Jong;Go, Eun Ji;Lim, Jung Dae;Park, Cheol Ho;Kang, Wie Soo
    • Korean Journal of Medicinal Crop Science
    • /
    • v.26 no.4
    • /
    • pp.317-327
    • /
    • 2018
  • Background: The root of Angelica gigas Nakai is used as a traditional herbal medicine in Korea for the treatment of many diseases. However, the poor water solubility of the active components in A. gigas Nakai is a major obstacle to its bioavailability. Methods and Results: This work aimed at enhancing the solubility of the active compounds of A. gigas Nakai by a chemical (using a surfactant) and physical (hot melt extrusion, HME) crosslinking method. Fourier transform infrared spectroscopy revealed multiple peaks in the case of the extrudate solids, attributable to new functional groups including carboxylic acid, alkynes, and benzene derivatives. Differential scanning calorimetry analysis showed that the extrudate soilid had a lower glass transition temperature ($T_g$) and enthalpy (${\Delta}H$) ($T_g:43^{\circ}C$, ${\Delta}H$ : < 6 J/g) as compared to the non-extrudate ($T_g:68.5^{\circ}C$, ${\Delta}H:123.2$) formulations. X-ray powder diffraction analysis revealed the amorphization of crystalline materials in the extrudate solid. In addition, enhanced solubility (53%), nanonization (403 nm), and a higher amount of extracted phenolic compounds were achieved in the extrudate solid than in the non-extrudate (solubility : 36%, nanonization : 1,499 nm) formulation. Among the different extrudates, acetic acid and span 80 mediated formulations showed superior extractions efficiency. Conclusions: HME successfully enhanced the production of amorphous nano dispersions of phenolic compound including decursin from extrudate solid formulations.

Bulk Processing of an Amorphous $AI_{85}Ni_{10}Y_{5}$ Alloy Ribbon and Mechanical Properties by Annealing Treatment (비정질 $AI_{85}Ni_{10}Y_{5}$ 합금 리본의 벌크화와 어닐링에 따른 기계적 특성)

  • 고병철;김종현;유연철
    • Transactions of Materials Processing
    • /
    • v.8 no.6
    • /
    • pp.626-633
    • /
    • 1999
  • $Al_{85}Ni_{10}Y_5$ (at. %) amorphous alloy ribbons have been produced by rapidly solidification process and consolidated by the conventional powder metallurgy method. The grains with ∼90 nm were obtained in the Al85Ni10Y5 alloy extrudates by hot-pressing followed by hot-extusion. To investigate the effect of heat treatment on microstructural change of the extrudates, heat treatment was carried out from 200℃ to 400℃ at the step of 50℃. In addition, mechanical properties of the extrudates were analysed from torsion test at the temperature range or 400∼500℃ under a strain rates of 0.2, 0.5, and 1.0/sec. The extrudates showed a flow stress of ∼190 MPa and low elongation of ∼150% at 400℃, contributing to the enhancement of ductility and hardness for extrudates. Also, grain boundary sliding was occurred in the $Al_{85}Ni_{10}Y_5$ alloy during hot deformation.

  • PDF

Corrosion Mechanisms of New Wrought Mg-Zn Based Alloys Alloying with Si, Ca and Ag

  • Ben-Hamu, G.;Eliezer, D.;Shin, K.S.;Wagner, L.
    • Corrosion Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.152-157
    • /
    • 2008
  • New wrought magnesium alloys have increasingly been developed in recent years for the automotive industry due to their high potential as structural materials for low density and high strength/weight ratio demands. However, their poor mechanical properties and low corrosion resistance have led to a search for new kinds of magnesium alloys with better strength, ductility, and high corrosion resistance. The main objective of this research is to investigate the corrosion behaviour of new magnesium alloys: Mg-Zn-Ag (ZQ), Mg-Zn-Mn-Si (ZSM) and Mg-Zn-Mn-Si-Ca (ZSMX). These ZQ6X, ZSM6X1, and ZSM651+YCa alloys were prepared using hot extrusion. AC, DC polarization and immersion tests were carried out on the extruded rods. Microstructure was examined using optical and electron microscopy (SEM) and EDS. The addition of silver decreased the corrosion resistance. The additions of silicon and calcium also affected the corrosion behaviour. These results can be explained by the effects of alloying elements on the microstructure of Mg-Zn alloys such as grain size and precipitates caused by the change in precipitation and recrystallisation behaviour.

A Study of Metal Technology in Ancient Silla Dynasity (고대신라의 금속기술 연구)

  • 강성군;조종수
    • Journal of the Korean institute of surface engineering
    • /
    • v.8 no.1
    • /
    • pp.1-9
    • /
    • 1975
  • The crorosion film of gilt bronz, silver and iron objects, which were excaved from Ancient Tomb of Silla Dynasty, was removed by the electrolytic reduction process. These metallic objects were mainly investigated for microstructure, designs and gilting film etc. Most iron objects might be made by hot forging process. The cold extrusion technique might be used for gold and silver objects, in addition to an amalgam method might be applied for the gilting Au film on Cu-alloy surface. For the gilting on glass surface, first, a Cu alloy was cladded on glass , next, Au-film was obtained on the Cu-ally by the amagum method.

  • PDF

Characterization of Color Change in Injection Molding Process Using Hot Runner (핫 러너 사출 공정에서 수지의 색 교체 특성 연구)

  • Hong, Ji Sun;Shim, Hee Soo;Lee, Ji-Hyun;Kwon, Min-Kyung;Chung, Dong-Il;Kim, Sun Kyoung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.1
    • /
    • pp.111-115
    • /
    • 2015
  • In injection molding process using hot runners, color change is a critical issue. This work proposes a method of assessing the color change characteristics of thermoplastics polymers. A method that utilizes a capillary die to measure degree of color change has been devised and implemented. The extrudate from the capillary die has been imaged and quantized to a gray scale value. Based on the gray scale value, the degree of color change has been determined. Under given temperatures and extrusion velocity, its trend along with the number of extrusion has been obtained and analyzed.

Precipitation Behaviors of Rapidly Solidified and Hot Worked Al-Zr Base Alloys (급냉응고 및 열간가공된 Al-Zr계 합금의 석출거동)

  • Park, Won-Wook
    • Journal of Korea Foundry Society
    • /
    • v.15 no.2
    • /
    • pp.194-200
    • /
    • 1995
  • Rapidly Solidified (RS) Al-Zr base splats with various alloy contents were prepared by atomization-splat quenching method to understand the continuous and discontinuous precipitation in the aged alloys. And the RS alloys were consolidated by hot extrusion and swaging to analyze the effect of plastic deformation on the precipitation behavior. Discontinuous precipitation dominated at relatively low temperature in the Al-Zr alloy, whereas both V additions to Al-Zr alloys and hot metal working appeared to suppress the discontinuous precipitation. As continuous precipitation is favored in the grain interiors, the driving force for discontinuous precipitation become to disappear with a further process.

  • PDF

Forging Defects Analysis by Full 3-Dimensional Simulation based on F.V.M. (단조품 결함에 대한삼차원 단조 공정 해석)

  • 박승희;제정신
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.216-220
    • /
    • 2003
  • Most important for meaningful forging simulation is the determination of correct process parameters. In addition a check and a compensation of the data base after the comparison between experiments and the computation of the developed process is necessary. The existence of a systematic process parameter data bank for special kinds of forming process in combination with forging specific simulation lifts the value of the products. Finite volume method is applied to simulate the hot forging process to investigate the defects for the automobile product. Three typical forging processes have been investigated; Extrusion by hydrolic press, Upsetting by crank press and Inclined upsetting by hammer press. Simulated result has compared with the experiment and provided a direction to improve the process.

  • PDF

Fabrication of Natural Fiber Composites through Hot Press and Analysis of Interfacial Adhesion (고온 프레스를 이용한 자연섬유 복합재료 제조와 계면 결합 분석)

  • Yi, Jin W.;Hwang, Byung S.;Lee, Jung H.;Nah, Chang W.
    • Journal of Adhesion and Interface
    • /
    • v.7 no.2
    • /
    • pp.26-31
    • /
    • 2006
  • In order to effectively improve interfacial adhesion strength between polypropylene (PP) and jute fiber, we particularly incorporated maleic anhydride grafted PP (MAPP) into the matrix through the environment-friendly process without an additional method of process and had better mechanical performances by providing the alignment into the natural fiber than those of the conventional fabrication technology such as an extrusion or injection molding. We also proposed hot pressing method which applied relatively low shear to the composites and confirmed the chemical bonds among the functional groups of MAPP and jute using FT-IR approach. The concentration of MAPP for maximum tensile strength and modulus was optimized at 3 wt%. Flexural properties had no noticeable tendency to increase with MAPP contents compared to tensile strength, which could probably be explained by the degree in wetting of PP/MAPP matrix.

  • PDF