• Title/Summary/Keyword: host response

Search Result 571, Processing Time 0.03 seconds

Platform of Hot Pepper Defense Genomics: Isolation of Pathogen Responsive Genes in Hot Pepper (Capsicum annuum L.) Non-Host Resistance Against Soybean Pustule Pathogen (Xanthomonas axonopodis pv. glycines)

  • Lee, Sang-Hyeob;Park, Do-Il
    • The Plant Pathology Journal
    • /
    • v.20 no.1
    • /
    • pp.46-51
    • /
    • 2004
  • Host resistance is usually parasite-specific and is restricted to a particular pathogen races, and commonly is expressed against specific pathogen genotypes. In contrast, resistance shown by an entire plant species to a species of pathogen is known as non-host resistance. Therefore, non-host resistance is the more common and broad form of disease resistance exhibited by plants. As a first step to understand the mechanism of non-host plant defense, expressed sequence tags (EST) were generated from a hot pepper leaf cDNA library constructed from combined leaves collected at different time points after inoculation with non-host soybean pustule pathogen (Xanthomonas axonopodis pv. Glycines; Xag). To increase gene diversity, ESTs were also generated from cDNA libraries constructed from anthers and flower buds. Among a total of 10,061 ESTs, 8,525 were of sufficient quality to analyze further. Clustering analysis revealed that 55 % of all ESTs (4685) occurred only once. BLASTX analysis revealed that 74% of the ESTs had significant sequence similarity to known proteins present in the NCBI nr database. In addition, 1,265 ESTs were tentatively identified as being full-length cDNAs. Functional classification of the ESTs derived from pathogen-infected pepper leaves revealed that about 25% were disease- or defense-related genes. Furthermore, 323 (7%) ESTs were tentatively identified as being unique to hot pepper. This study represents the first analysis of sequence data from the hot pepper plant species. Although we focused on genes related to the plant defense response, our data will be useful for future comparative studies.

The Hypersensitive Response. A Cell Death during Disease Resistance

  • Park, Jeong-Mee
    • The Plant Pathology Journal
    • /
    • v.21 no.2
    • /
    • pp.99-101
    • /
    • 2005
  • Host cell death occurs during many, but not all, interactions between plants and the pathogens that infect them. This cell death can be associated with disease resistance or susceptibility, depending on the nature of the pathogen. The most well-known cell death response in plants is the hypersensitive response (HR) associated with a resistance response. HR is commonly regulated by direct or indirect interactions between avirulence proteins from pathogen and resistance proteins from plant and it can be the result of multiple signaling pathways. Ion fluxes and the generation of reactive oxygen species commonly precede cell death, but a direct involvement of the latter seems to vary with the plant-pathogen combination. Exciting advances have been made in the identification of cellular protective components and cell death suppressors that might operate in HR. In this review, recent progress in the mechanisms by which plant programmed cell death (PCD) occurs during disease resistance will be discussed.

ppGpp: Stringent Response and Survival

  • Jain Vikas;Kumar Manish;Chatterji Dipankar
    • Journal of Microbiology
    • /
    • v.44 no.1
    • /
    • pp.1-10
    • /
    • 2006
  • Adaptation to any undesirable change in the environment dictates the survivability of many microorganisms, with such changes generating a quick and suitable response, which guides the physiology of bacteria. During nutritional deprivation, bacteria show a stringent response, as characterized by the accumulation of (p)ppGpp, resulting in the repression of stable RNA species, such as rRNA and tRNA, with a concomitant change in colony morphology. However, genes involved in amino acid biosynthesis become over-expressed to help bacteria survive under such conditions. The survivability of pathogenic bacteria inside a host cell also depends upon the stringent response demonstrated. Therefore, an understanding of the physiology of stringent conditions becomes very interesting in regulation of the growth and persistence of such invading pathogens.

A study on the designing f private networks considering response time under packet switching network environment (패킷교환망 환경하에서 응답시간을 고려한 사설망 설계에 관한 연구)

  • 이영찬;민재형
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.10a
    • /
    • pp.157-161
    • /
    • 1996
  • This paper presents a method for designing private networks considering response time under packet switching network environment Specifically, we propose the designing process of a private network, where the host is assumed to be synchronous and the terminals to be asynchronous, according to protocol and access lines. To calculate the response time for the networks, we use the mutual independent M/M/1 and M/W/s queueing models. Comparing the response time derived from the model with the actual one, it is found that the model yields almost same performance in a more economic way. From the experiment, it is suggested that the necessary number of lines as well as the response time for a specific network can be estimated properly by sensitivity analysis.

  • PDF

Change of Gene Expression Pattern of Mycobacterium tuberculosis H37Rv Against Host Immune Response in Infected Mouse Lung (결핵균 H37Rv에 감염된 마우스의 폐에서 면역 반응에 대항하는 Mtb 유전자의 발현 변화)

  • Lee, Hyo-Ji;Cho, Jung-Hyun;Kang, Su-Jin;Jung, Yu-Jin
    • Korean Journal of Microbiology
    • /
    • v.46 no.2
    • /
    • pp.134-139
    • /
    • 2010
  • Mycobacterium tuberculosis (Mtb) is one of the most successful pathogens to infect one third of world population. Th1-mediated immunity against Mtb infection is known as critical to express mycobacteriostatic function but it is not sufficient to resolve the infection. In this study, to verify the possibility Mtb itself change the gene expression to survive against host immune response, expression pattern of selected H37Rv genes, 16S rRNA, acr, fbpA, aceA, and ahpC, during the course of infection was measured with absolute quantitation method using real-time RT-PCR. The total number of transcripts of 16S rRNA increased during the course of infection, which was coincide with the increasing CFU. The total number of fbpA transcripts per CFU, which encode typical secreted Mtb antigen, Ag85A, increased for 10 days of infection before decreasing. The number of transcripts of acr per CFU, which encode heat shock protein, ${\alpha}$-crystallin, increased during the infection, and ahpC and aceA, they both are enzymes produced in oxidative stressful condition, increased for 20 days and then slightly decreased on day 30. These findings are one of survival strategy of pathogen evading host immune response lead to persistent infection inside host cells.

Galectin-1 from redlip mullet Liza haematocheilia: identification, immune responses, and functional characterization as pattern recognition receptors (PRRs) in host immune defense system

  • Chaehyeon Lim;Hyukjae Kwon;Jehee Lee
    • Fisheries and Aquatic Sciences
    • /
    • v.25 no.11
    • /
    • pp.559-571
    • /
    • 2022
  • Galectins, a family of ß-galactoside-binding lectins, have emerged as soluble mediators in infected cells and pattern recognition receptors (PRRs) responsible for evoking and regulating innate immunity. The present study aimed to evaluate the role of galectin-1 in the host immune response of redlip mullet (Liza haematocheilia). We established a cDNA database for redlip mullet, and the cDNA sequence of galectin-1 (LhGal-1) was characterized. In silico analysis was performed, and the spatial and temporal expression patterns in gills and blood in response to lipopolysaccharide polyinosinic:polycytidylic acid, and Lactococcus garvieae were estimated via quantitative real-time PCR. Functional assays were conducted using recombinant protein to investigate carbohydrate binding, bacterial binding, and bacterial agglutination activity. LhGal-1 was composed of 135 amino acids. Conserved motifs (H-NPR, -N- and -W-E-R) within the carbohydrate recognition domain were found in LhGal-1. The tissue distribution revealed that the healthy stomach expressed high levels of LhGal-1. The temporal monitoring of LhGal-1 mRNA expression in the gill and blood showed its significant upregulation in response to immune challenges with different stimulants. rLhGal-1 exhibited binding activity in response to carbohydrates and bacteria. Moreover, the agglutination of rLhGal-1 against Escherichia coli was observed. Collectively, our findings suggest that LhGal-1 may function as a PRR in redlip mullet. Furthermore, LhGal-1 can be considered a significant gene to play a protective role in redlip mullet immune system.

Viral Inhibition of PRR-Mediated Innate Immune Response: Learning from KSHV Evasion Strategies

  • Lee, Hye-Ra;Choi, Un Yung;Hwang, Sung-Woo;Kim, Stephanie;Jung, Jae U.
    • Molecules and Cells
    • /
    • v.39 no.11
    • /
    • pp.777-782
    • /
    • 2016
  • The innate immune system has evolved to detect and destroy invading pathogens before they can establish systemic infection. To successfully eradicate pathogens, including viruses, host innate immunity is activated through diverse pattern recognition receptors (PRRs) which detect conserved viral signatures and trigger the production of type I interferon (IFN) and pro-inflammatory cytokines to mediate viral clearance. Viral persistence requires that viruses co-opt cellular pathways and activities for their benefit. In particular, due to the potent antiviral activities of IFN and cytokines, viruses have developed various strategies to meticulously modulate intracellular innate immune sensing mechanisms to facilitate efficient viral replication and persistence. In this review, we highlight recent advances in the study of viral immune evasion strategies with a specific focus on how Kaposi's sarcoma-associated herpesvirus (KSHV) effectively targets host PRR signaling pathways.

Construction of a Transcriptome-Driven Network at the Early Stage of Infection with Influenza A H1N1 in Human Lung Alveolar Epithelial Cells

  • Chung, Myungguen;Cho, Soo Young;Lee, Young Seek
    • Biomolecules & Therapeutics
    • /
    • v.26 no.3
    • /
    • pp.290-297
    • /
    • 2018
  • We aimed to understand the molecular changes in host cells that accompany infection by the seasonal influenza A H1N1 virus because the initial response rapidly changes owing to the fact that the virus has a robust initial propagation phase. Human epithelial alveolar A549 cells were infected and total RNA was extracted at 30 min, 1 h, 2 h, 4 h, 8 h, 24 h, and 48 h post infection (h.p.i.). The differentially expressed host genes were clustered into two distinct sets of genes as the infection progressed over time. The patterns of expression were significantly different at the early stages of infection. One of the responses showed roles similar to those associated with the enrichment gene sets to known 'gp120 pathway in HIV.' This gene set contains genes known to play roles in preventing the progress of apoptosis, which infected cells undergo as a response to viral infection. The other gene set showed enrichment of 'Drug Metabolism Enzymes (DMEs).' The identification of two distinct gene sets indicates that the virus regulates the cell's mechanisms to create a favorable environment for its stable replication and protection of gene metabolites within 8 h.

The Stress-Activated Signaling (SAS) Pathways of a Human Fungal Pathogen, Cryptococcus neoformans

  • Jung, Kwang-Woo;Bahn, Yong-Sun
    • Mycobiology
    • /
    • v.37 no.3
    • /
    • pp.161-170
    • /
    • 2009
  • Cryptococcus neoformans is a basidiomycete human fungal pathogen that causes meningoencephalitis in both immunocompromised and immunocompetent individuals. The ability to sense and respond to diverse extracellular signals is essential for the pathogen to infect and cause disease in the host. Four major stress-activated signaling (SAS) pathways have been characterized in C. neoformans, including the HOG (high osmolarity glycerol response), PKC/Mpk1 MAPK (mitogen-activated protein kinase), calcium-dependent calcineurin, and RAS signaling pathways. The HOG pathway in C. neoformans not only controls responses to diverse environmental stresses, including osmotic shock, UV irradiation, oxidative stress, heavy metal stress, antifungal drugs, toxic metabolites, and high temperature, but also regulates ergosterol biosynthesis. The PKC(protein kinase C)/Mpk1 pathway in C. neoformans is involved in a variety of stress responses, including osmotic, oxidative, and nitrosative stresses and breaches of cell wall integrity. The $Ca^{2+}$/calmodulin- and Ras-signaling pathways also play critical roles in adaptation to certain environmental stresses, such as high temperature and sexual differentiation. Perturbation of the SAS pathways not only impairs the ability of C. neoformans to resist a variety of environmental stresses during host infection, but also affects production of virulence factors, such as capsule and melanin. A drug(s) capable of targeting signaling components of the SAS pathway will be effective for treatment of cryptococcosis.