DOI QR코드

DOI QR Code

The Stress-Activated Signaling (SAS) Pathways of a Human Fungal Pathogen, Cryptococcus neoformans

  • Jung, Kwang-Woo (Department of Biotechnology, Center for Fungal Pathogenesis, College of Life Science and Biotechnology, Yonsei University) ;
  • Bahn, Yong-Sun (Department of Biotechnology, Center for Fungal Pathogenesis, College of Life Science and Biotechnology, Yonsei University)
  • Published : 2009.09.30

Abstract

Cryptococcus neoformans is a basidiomycete human fungal pathogen that causes meningoencephalitis in both immunocompromised and immunocompetent individuals. The ability to sense and respond to diverse extracellular signals is essential for the pathogen to infect and cause disease in the host. Four major stress-activated signaling (SAS) pathways have been characterized in C. neoformans, including the HOG (high osmolarity glycerol response), PKC/Mpk1 MAPK (mitogen-activated protein kinase), calcium-dependent calcineurin, and RAS signaling pathways. The HOG pathway in C. neoformans not only controls responses to diverse environmental stresses, including osmotic shock, UV irradiation, oxidative stress, heavy metal stress, antifungal drugs, toxic metabolites, and high temperature, but also regulates ergosterol biosynthesis. The PKC(protein kinase C)/Mpk1 pathway in C. neoformans is involved in a variety of stress responses, including osmotic, oxidative, and nitrosative stresses and breaches of cell wall integrity. The $Ca^{2+}$/calmodulin- and Ras-signaling pathways also play critical roles in adaptation to certain environmental stresses, such as high temperature and sexual differentiation. Perturbation of the SAS pathways not only impairs the ability of C. neoformans to resist a variety of environmental stresses during host infection, but also affects production of virulence factors, such as capsule and melanin. A drug(s) capable of targeting signaling components of the SAS pathway will be effective for treatment of cryptococcosis.

Keywords

References

  1. Aksenov, S.I., Babyeva, I. P.and Golubev, V.I. 1973. On themechanism of adaptation of micro-organisms to conditions ofextreme low humidity. Life Sci. Space Res. 11:55-61
  2. Alspaugh, J.A., Cavallo, L.M., Perfect, J.R. and Heitman, J.2000. RASI regulates filamentation, mating and growth at hightemperature of Cryptococcus neoformans. Mol. Microbiol.36:352-365 https://doi.org/10.1046/j.1365-2958.2000.01852.x
  3. Alspaugh, J.A., Perfect, J.R. and Heitman, J. 1997. Cryptococcus neoformans mating and virulence are regulated by the Gprotein alpha subunit GPAI and cAMP. Genes Dev. 11:3206-3217 https://doi.org/10.1101/gad.11.23.3206
  4. Alspaugh, J.A., Pukkila-Worley, R., Harashima, T., Cavallo, L.M., Funnell, D., Cox, G.M., Perfect, J.R., Kronstad, J.W. and Heitman, J. 2002. Adenylyl cyclase funcations downstream of the Galpha protein Gpal and controls mating and pathogenicity of Cryptococcus neoformans. Eukaryot. Cell 1:75-54 https://doi.org/10.1128/EC.1.1.75-84.2002
  5. Aramburu, J., Rao, A. and klee, C.B. 2000. Calcineurin:fromstructure to function. Curr. Top. Cell Regul. 36:237-295
  6. Bahn, Y. S. 2008. Master and commander in fungal pathogens: the two-component system and the HOG signaling pathway. Eukaryot. Cell. 7:2017-2036 https://doi.org/10.1128/EC.00323-08
  7. Bahn, Y. S., Geunes-Boyer, S. and Heitman, J. 2007. Ssk2 mitogen-activated protein kinase kinase kinase governs divergent patterns of the stress-activated Hogl signaling pathway in Cryptococcus neoformans. Eukaryot. Cell 6:2278-2289 https://doi.org/10.1128/EC.00349-07
  8. Bahn, Y.S., Hicks, J.K., Giles, S.S., Cox, G.M. and Heitman, J. 2004. Adenylyl cyclase associated protein Acal regulates virulence and differentiation of Cryptococcus neoformans via thecyclic AMP-protein kinase A cascade. Eukaryol. Cell 3:1476-1491 https://doi.org/10.1128/EC.3.6.1476-1491.2004
  9. Bahn, Y.S., Kojima, K., Cox, G,M. and Heitman, J. 2005.Specialization of the HOG pathway and its impact on difffrentiation and virulence of Cryptococcus neformans. Mol. Biol.Cell. 16:2285-2300 https://doi.org/10.1091/mbc.E04-11-0987
  10. Bahn, Y.S., Kojima, K., Cox, G.M. and Heitman, J. 2006.Aunique fungal two-component system regulates stressresponses, drug sensitivity, sexual development, and virulenceof Cryptococcus neformans. Mol. Biol. Cell. 17:3122-3135 https://doi.org/10.1091/mbc.E06-02-0113
  11. Barbacid, M. 1987. ras genes. Annu. Rev. Biochem. 56:779-827 https://doi.org/10.1146/annurev.bi.56.070187.004023
  12. Berridge, M.J., Bootman, M.D. and Roderick, H.L. 2003. Calcium signalling: dynamics, homeostasis and remodelling. Nat.Rev. Mol Cell. Biol. 4:517-529 https://doi.org/10.1038/nrm1155
  13. Bourne, H.R., Sanders, D.A. and McCormick, F. 1990. The GTPpase superfamily: a conserved switch for diverse cell functions. Nature 348:125-132 https://doi.org/10.1038/348125a0
  14. Bourne, H.R., Sanders, D.A. and McCormick, F. 1991. The GTPpase superfamily: conserved structure and molecular mechanism. Nature 349:117-127 https://doi.org/10.1038/349117a0
  15. Chang, Y,C., Cherniak, R., Kozel, T.R., Granger, D.L., Morris,L.C., Weinhold, L.C. and Kwon-Chung, K.J. 1997. Structure and biological activities of acapsular Cryptococcus neoformans 602 complemented with the CAP64 gene. Infect. Immun. 65:1584-1592
  16. Chang, Y.C. and Kwon-Chung, K.J. 1994. Complementation of a capsule-deficient mutation of Cryptococcus neoformansrestores its virulence. Mol. Cell. Biol. 14:4912-4919
  17. Chang, Y.C. and Kwon-Chung, K.J. 1998. Isolation of the thirdcapsule-associated gene, CAP60, required for virulence in Cryptococcus neoformans. Infect. Immun. 66:2230-2236
  18. Chang, Y,C. and Kwon-Chung, K.J. 1999. Isolation, characterization, and localization of a capsule-associated gene, CAP10, of Cryptococcus neoformans. J. Bacteriol. 181:5636-5643
  19. Chang, Y.C., Penoyer, L.A. and Kwon-Chung, K.J. 1996. Thesecond capsule gene of Cryptococcus neoformans, CAP64, is essential for virulence. Infect. Immun. 64:1977-1983
  20. Chang, Y,C., Wickes, B.L. and Kwon-Chung, K.J. 1995. Further analysis of the CAP59 locus of Cryptococcus neoformans: structure defined by forced expression and description ofa new ribosomal protein-encoding gene. Gene 167:179-183 https://doi.org/10.1016/0378-1119(95)00640-0
  21. Chen, R.E. and Thormer, J. 2007. Function and regulation in MAPK signaling pathways: lessons learned from the yeast Saccharomyces cerevisiae. Biochim. Biophys. Acta. 1773:1311-1340 https://doi.org/10.1016/j.bbamcr.2007.05.003
  22. Chin, D. and Means, A.R. 2000. Calmodulin: a prototypical caicium sensor. Trends Cell Biol. 10:322-328 https://doi.org/10.1016/S0962-8924(00)01800-6
  23. Cyert, M.S. 2001. Genetic analysis of calmodulin and its targets in Saccharomyces cerevisiae. Annu. Rev. Genet. 35:647-672 https://doi.org/10.1146/annurev.genet.35.102401.091302
  24. D'Souza, C.A., Alspaugh, J.A., Yue,C., Harashima, T., Cox,G.M., Perfect, J.R. and Heitman, J. 2001. Cyclic AMP-dependent protein kinase controls virulence of the fungal pathogenCryptococcus neoformans. Mol. Cell. Biol. 21:3179-3191 https://doi.org/10.1128/MCB.21.9.3179-3191.2001
  25. DeI Poeta, M., Cruz, M.C., Cardenas, M.E., Perfect, J.R. and Heitman, J. 2000. Synergistic antifungal activities of bafilomy-cin A(1), fluconazole, and the pneumocandin MK 0991/caspofungin acetate (L-743,873) with calcineurin inhibitor FK506and L-685,818 against Cryptococcus neoformans. Antimicrob Agents Chemother. 44:739-746 https://doi.org/10.1128/AAC.44.3.739-746.2000
  26. Delley, P.A. and Hall, M.N. 1999. Cell wall stress depolarizes Cell growth via hyperactivation of RHOl. J. Cell. Biol. 147:163-174 https://doi.org/10.1083/jcb.147.1.163
  27. Ernst, J.F. 2000. Transcription factors in Candida albicans - enviroumental control of morphogenesis. Microbiology 146(Pt8):1763-1774
  28. Fox, D.S. and Heitman, J. 2002. Good fungi gone bad: the corruption of calcineurin. Bioessays 24:894-903 https://doi.org/10.1002/bies.10157
  29. Fox, D.S., Cruz, M.C., Sia, R.A., Ke, H., Cox, C,M., Carde-nas, M.E. and Heitman, J. 2001. Calcineurin regulatory subunit is essential for virulence and mediates interactions with FKBP12-FK506 in Cryptococcus neoformans. Mol. Microbiol.39:835-849 https://doi.org/10.1046/j.1365-2958.2001.02295.x
  30. Fraser, J.A., Subaran, R.L., Nichols, C.B. and Heitman, J.2003. Recapilation of the sexual cycle of the primary fungal Pathogen Cryptococcus neoformans var gattii: implications foran outbreak on Vancouver Island, Canada. Eukaryot. Cell2:1036-1045 https://doi.org/10.1128/EC.2.5.1036-1045.2003
  31. Gerik, K.J., Bhimireddy, S.R., Ryerse, J.S., Specht, C.A. andLodge, J.K. 2008. PKC1 is essential for protection againstboth oxidative and nitrosative stresses, cell integrity, and nor-mal manifestation of virulence factors in the pathogenic fungus Cryptococcus neoformans. Eukaryot. Cell 7:1685-1698 https://doi.org/10.1128/EC.00146-08
  32. Gerik, K.J., Donlin, M.J., Soto, C.E., Banks, A.M., Banks,,I.R., Maligie, M.A., Selitrennikoff, C.P. and Lodge, J.K. 2005. Cell wall integrity is dependent on the PKC1 signaltransduction pathway in Cryptococcus neoformans. Mol. Microbiol. 58:393-408 https://doi.org/10.1111/j.1365-2958.2005.04843.x
  33. Gimeno, C.J., Ljungdahl, P.0., Styles, C.A. and Fink, G.R.1992. Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by stalvation and RAS. Cell 68:1077-1090 https://doi.org/10.1016/0092-8674(92)90079-R
  34. Hemenway, C.S. and Heitman, J. 1999. Calcineurin. Structure,function, and inhibition. Cell. Biochem. Biophys. 30:115-151 https://doi.org/10.1007/BF02737887
  35. Heung, L.J., Luberto, C., Plowden, A., Hannun, Y.A. and DelPoeta, M. 2004. The sphingolipid pathway regulates Pkc1through the formation of diacylglycerol in Cryptococcus neoformans. J. Biol. Chem. 279:21144-21153 https://doi.org/10.1074/jbc.M312995200
  36. Ho, J. and Bretscher, A. 2001. Ras regulates the polarity of the eyeast actin cytoskeleton torough the stress response pathway. Mol. Biol. Cell 12:1541-1555
  37. Hoang, L.H., Maguire, J.A., Doyle, P., Fyfe, M. and Roscoe, D.L. 2004. Cryptococcus neoformans infections at VancouverHospital and Health Sciences Centre (1997~2002): epidemiology, microbiology and histopathology. J. Med. Microbiol. 53:935-940 https://doi.org/10.1099/jmm.0.05427-0
  38. Hughes, D.A. 1995. Control of signal transduction and morphogenesis by Ras. Semin Cell. Biol. 6:89-94
  39. Idnurm, A., Bahn, Y.S., Nielsen, K., Lin, X., Fraser, J.A. and Heitman, J. 2005. Deciphering the model pathogenic fungus Cryptococcus neoformans. Nat. Rev. Microbiol. 3:753-764 https://doi.org/10.1038/nrmicro1245
  40. Idnurm, A., Walton, F.J., Floyd, A., Reedy, J.L. and Heitman, J. 2009. Identification of ENAI as virulence gene of the human Pathogenic fungus Cryptococcus neofrmans through signalure-tagged insertional mutagenesis. Eukaryol. Cell 8:315-326 https://doi.org/10.1128/EC.00375-08
  41. Ikura, M. 1996. Calcium binding and conformational response in EF-hand proteins. Trends Biochem. Sci. 21:14-17
  42. Jacobson, E.S. and Emery, H.S. 1991. Catecholamnine uptake, melanization, and oxygen toxicity in Cryptococcus neoformas. J. Bacteriol. 173:401-403
  43. Jiang, Y., Davis, C. and Broach, J.R. 1998. Efficient transition togrowth on fermentable carbon sources in Saccharomyces cerevisiae requir signaling through the Ras pathway. EMBO J. 17:6942-6951 https://doi.org/10.1093/emboj/17.23.6942
  44. Kataoka, T., Powers, S., McGill, C., Fasano, 0., Stratherm,, J., Broach, J. and Wigler, M. 1984. Genetic analysis of yeast RAS1 and RAS2 genes. Cell 37:437-445 https://doi.org/10.1016/0092-8674(84)90374-X
  45. Ko, Y.J., Yu, Y.M., Kim, G.B., Lee, G.W., Maeng, P.J., Kim, S., F1oyd, A., Heitman, J. and Bahn, Y.S. 2009. Remodeling of global transcription patterns of Cryptococcus neoformansgenes mediated by the stress-activated HOG signaling pathways.Eukaryot. Cell 8:1197-1217 https://doi.org/10.1128/EC.00120-09
  46. Kojima, K., Bahn, Y,S. and Heitman, J. 2006. Calcineurin, Mpkl and Hogl MAPK pathways independently control fludioxonilantifungal sensitivity in Cryptococcus neoformans. Microbiology 152:591-604 https://doi.org/10.1099/mic.0.28571-0
  47. Kraus, P.R. and Heitman, J. 2003. Coping with stress: calmodulin and calcineurin in model and pathogenic fungi. Biochem. Biophys. Res. Commun. 311:1151-1157 https://doi.org/10.1016/S0006-291X(03)01528-6
  48. Kraus, P.R., Nichols, C.B. and Heitman, J. 2005. Calcium-andcalcineurin-independent roles for calmodulin in Cryptococcus neoformans morphogenesis and high-temperature growth.Eukaryot. Cell 4:1079-1087 https://doi.org/10.1128/EC.4.6.1079-1087.2005
  49. Kwon-Chung, K.J. 1976. Morphogenesis of Filobasidiella neoformans, the sexual state of Cryptococcus neoformans. Mycologia 68:821-833 https://doi.org/10.2307/3758800
  50. Kwon-Chung, K.J. and Bennett, J.E. 1978. Distribution of alpha and alpha mating types of Cryptococcus neoformans among natural and clinical isolates. Am. J. Epidemiol. 108:337-340
  51. Kwon-Chung, K.J., Polacheck, I. and Popkin, T.J. 1982. Melanin-lacking mutants of Cryptococcus neoformas and their virulence for mice. J. Bacteriol. 150:1414-1421
  52. Kwon-Chung, K.J. and Rhodes, J.C. 1986. Encapsulation and melanin formation as indicators of virulence in Cryptococcus neoformans. Infect. Immun. 51:218-223
  53. Kwon-Chung, K.J., Wickes, B.L., Stockman, L., Roberts, G.D., Ellis, D. and Howard, D.H. 1992. Virulence, serotype, and molecular characteristics of environmental strains of Cryptococcus neoformans var. gattii. Infect. Immun. 60:1869-1874
  54. Levin, D.E. 2005. Cell wall integrity signaling in Saccharomyces cervisiae. Microbiol. Mol. Biol. Rev. 69:262-291 https://doi.org/10.1128/MMBR.69.2.262-291.2005
  55. Levin, D.E., Fields, F.0., Kunisawa, R., Bishop, J.M. and Thor-ner, J. 1990. A candidate protein kinase C gene, PKC1, is required for the S.cervisiae cell cycle. Cell 62:213-224
  56. Lin, X. and Heitman, J. 2006. The biology of the Cryptococcus neoformans species complex. Annu. Rev. Microbiol. 60:69-105 https://doi.org/10.1146/annurev.micro.60.080805.142102
  57. Lin, X., Hull, C.M. and Heitman, J. 2005. Sexual reproduction between partners of the same mating type in Cryptococcus neoformans. Nature 434:1017-1021 https://doi.org/10.1038/nature03448
  58. Liu, H., Cottrell, T.R., Pierini, L.M., GoIdman, W.E. and Doering, T.L. 2002. RNA interference in the pathogenic fungus Cryptococcus neoformans. Genetics 160:463-470
  59. Liu, J., Farmer, J.D.,Jr., Lane, W.S., Friedman, J., Weissman, I. and Schreiber, S.L. 1991. Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell 66:807-815 https://doi.org/10.1016/0092-8674(91)90124-H
  60. Nichols, C.B., Perfect, Z.H. and Alspaugh, J.A. 2007. A RaslCdc24 signal transduction pathway mediates thermotolerance in the fungaI pathogen Cryptococcus neoformans. Mol. Microbiol. 63:1118-1130 https://doi.org/10.1111/j.1365-2958.2006.05566.x
  61. Nielsen, K., Cox, G.M., Litvintseva, A.P., Mylonakis, E., Malliaris, S.D., Benjamin, D.K.,Jr., Giles, S.S., Mitchell, T.G., Casadevall, A., Perfect, J.R. and Heitman, J. 2005. Cryptococcus noeoformans a strains preferentially disseminate to the central nervous system during coinfection. Infect. Immun. 73:4922-4933 https://doi.org/10.1128/IAI.73.8.4922-4933.2005
  62. NieIsen, 0., Davey, J. and Egel, R. 1992. The rasl function of Schizosaccharomyces pombe meiates pheromone-induced transcription. EMBO J. 11:1391-1395
  63. Nosanchuk, J.D., Rudolph, J., Rosas, A.L. and Casadevall, A. 1999. Evidence that Cryptococcus neoformans is melanized in pigeon excreta: jmplications for pathogenesis. Infect. Immun. 67:5477-5479
  64. Odom, A., Muir, S., Lim, E., Toffaletti, D.L., Perfect, J. and Heitman, J. 1997. Calcineurin is required for virulence of Cryptococcus neoformans. EMBO J. 16:2576-2589 https://doi.org/10.1093/emboj/16.10.2576
  65. Pascual-Ahuir, A. and proft, M. 2007. The Sch9 kinase is a chromatin-associated tanscriptional activator of osmostress-responsive genes. EMBO J. 26:3098-3100 https://doi.org/10.1038/sj.emboj.7601756
  66. Proft, M. and Struhl, K. 2004. MAP kinase-mediated stress relief that precedes and regulates the timing of transcriptional induction. Cell 118:351-361 https://doi.org/10.1016/j.cell.2004.07.016
  67. Pukkila-Worley, R., Gerrald, Q.D., Kraus, P.R., Boily, M.J., Davis, M.J., Giles, S.S., Cox, G.M., Heitman, J. and Alspaugh, J.A. 2005. Transcriptional network of multiple capsule and melanin genes governed by the Cryptococcus neoformans cyclic AMP cascade. Eukaryot. Cell 4:190-201 https://doi.org/10.1128/EC.4.1.190-201.2005
  68. Reese, A.J. and Doering, T.L. 2003. Cell wall alpha-1,3-glucan is required to anchor the Cryptococcus neoformans capsule. Mol. Microbiol. 50:1401-1409 https://doi.org/10.1046/j.1365-2958.2003.03780.x
  69. Rosas, A.L. and Casadevall, A. 1997. Melanization affects susceptibility of Cryptococcus neoformans to heat and cold.FEMS Microbiol. Lett 153:265-272 https://doi.org/10.1016/S0378-1097(97)00239-5
  70. Stanhill, A., Schick, N. and Engelberg, D. 1999. The yeast Ras/Cyclic AMP pathway induces invasive growth by suppressing the cellular stress response. Mol. Cell. Biol. 19:7529-7538
  71. Sukroongreung, S., Kitiniyom, K., Nilakul, C. and Tantimavanich, S. 1998. Pathogenicity of basidiospores of Filobasidiella neoformans var. neoformans. Med. Mycol. 36:419-424
  72. Tatchell, K., Chaleff, D.T., DeFeo-Jones, D. and Scolnick, E.M. 1984. Requirement of either of a pair of ras-related genes of Saccharomyces cerevisiae for spore viabiiity. Nature 309:523-527 https://doi.org/10.1038/309523a0
  73. Thevelein, J.M. 1994. Signal transduction in yeast. Yeast 10:1753-1790 https://doi.org/10.1002/yea.320101308
  74. Toda, T., Uno, I., Ishikawa, T., Powers, S., Kataoka, T., Broek, D., Cameron, S., Broach, J., Matsumoto, K. and Wigler, M. 1985. In yeast, RAS ploteins are controlling elements of adenylate cyclase. Cell 40:27-36 https://doi.org/10.1016/0092-8674(85)90305-8
  75. Tscharke, R.L., Lazera, M., Chang, Y.C., Wickes, B.L. and Kwon-Chung, K.J. 2003. Haploid fruiting in Cryptococcus neoformans is not mating type alpha-specific. Fungal Genet.Biol. 39:230-237 https://doi.org/10.1016/S1087-1845(03)00046-X
  76. Vandenbroucke, K., Robbens, S., Vandepoele, K., Inze, D., Van de Peer, Y. and Van Breusegem, F. 2008. Hydrogen peroxide-induced gene expression across kingdoms: acomparative analysis. Mol. Biol. Evol. 25:507-516 https://doi.org/10.1093/molbev/msm276
  77. Vartivarian, S.E., Anaissie, E.J., Cowart, R.E., Sprigg, H.A., Tingler, M.J. and Jacobson, E.S. 1993. Regulation of cryptococcal capsular polysaccharide by iron. J. Infect. Dis. 167:186-190
  78. Wang, Y, Aisen, P. and Casadevall, A. 1995. Cryptococcus neoformans melanin and virulence: mechanism of action. Infect.Immun. 63:3131-3136
  79. Wang, Y. and Casadevall, A. 1994. Decreased susceptibility of melanized Cryptococcus neoformans to UV light. Appl. Environ. Microbiol. 60:3864-3866
  80. Watanabe, Y., Perrino, B.A. and Soderling, T.R. 1996. Activation of calcineurin A subunit phosphatase activity by its cal-cium-binding B subunit. Biochemistry 35:562-566 https://doi.org/10.1021/bi951703+
  81. Waugh, M.S., Nichols, C.B., DeCesare, C.M., Cox, G.M., Heitman, J. and Alspaugh, J.A. 2002. Ras1 and Ras2 contribute shared and unique roles in physiology and virulence of Cryptococcus neoformans. Microbiology 148:191-201
  82. Waugh, M.S., Vallim, M.A., Heitman, J. and AIspaugh, J.A. 2003. Ras1 controls pheromone expression and response during mating in Cryptococcus neoformans. Fungal Genet. Biol. 38:110-121 https://doi.org/10.1016/S1087-1845(02)00518-2
  83. Wickes, B.L., Mayorga, M.E., Edman, U. and Edman, J.C. 1996. Dimorphism and haploid fruiting in Cryptococcus neoformans: association with the alpha-mating type. Proc. Natl.Acad. Sci. USA 93:7327-7331 https://doi.org/10.1073/pnas.93.14.7327
  84. Zaragoza, O., Fries, B.C. and Casadevall, A. 2003. Induction of capsule growth in Cryptococcus neoformans by mammalian serum and $CO_2$. Immun. 71:6155-6164
  85. Zhu, X., Gibbons, J., Garcia-Rivera, J., Casadevall, A. and Williamson, P.R. 2001. Laccase of Cryptococcus neoformans is a cell wall-associated virulence factor. Infect. Immun. 69:5589-5596 https://doi.org/10.1128/IAI.69.9.5589-5596.2001
  86. Zhu, X. and Williamson, P.R. 2004. Role of laccase in the biology and virulence of Cryptococcus neoformans. FEMS Yeast Res. 5:1-10 https://doi.org/10.1016/j.femsyr.2004.04.004

Cited by

  1. vol.95, pp.5, 2015, https://doi.org/10.1111/mmi.12898
  2. Macelignan inhibits bee pathogenic fungi Ascophaera apis growth through HOG1 pathway vol.49, pp.7, 2016, https://doi.org/10.1590/1414-431X20165313
  3. Pheromone independent unisexual development in Cryptococcus neoformans vol.13, pp.5, 2017, https://doi.org/10.1371/journal.pgen.1006772
  4. Macro and Microelements Drive Diversity and Composition of Prokaryotic and Fungal Communities in Hypersaline Sediments and Saline–Alkaline Soils vol.9, pp.1664-302X, 2018, https://doi.org/10.3389/fmicb.2018.00352
  5. pp.14625814, 2018, https://doi.org/10.1111/cmi.12961
  6. based on calmodulin and calcium/calmodulin-dependent kinase partial gene sequences vol.61, pp.6, 2018, https://doi.org/10.1111/myc.12751