• Title/Summary/Keyword: host differentials

Search Result 6, Processing Time 0.023 seconds

Ultrastructural Comparison of Soybean differentials Infected with a Virulent SMV Strain (병독성 콩모자이크바이러스계통에 감염된 콩판별품종의 미세구조의 비교)

  • Cho, E.K.;Martin, E.M.;Goeke, S.C.;Kim, K.S.
    • Korean Journal Plant Pathology
    • /
    • v.14 no.6
    • /
    • pp.563-566
    • /
    • 1998
  • Two soybean cultivars, Kwanggyo and Hwanggeum (soybean mosaic potyvirus (SMV)-resistant cultivars), that had been inoculated with a virulent strain (G-5H, 4) of soybean mosaic potyvirus produced necrotic lesions on inoculated leaves as well as on upper trifoliate leaves. Cells in the lesion area contained sparse numbers of virus particles and very few characteristic pinwheel inclusions. Although a hypersensitive-like cellular response occurred in the two resistant cultivars, this response did not prevent the virus from spreading systemically in these resistant hosts, indicating a different mechanism from the general hypersensitive reaction in relation to host resistance.

  • PDF

Studies on the Resistance and Races of Soybean-Cyst Nematode, Heterodera glycines, in Korea (콩씨스트선충(Heterodera glycines)에 대한 콩 저항성품종 및 Race검정)

  • Kim D.G.;Choi Y.E.
    • Korean journal of applied entomology
    • /
    • v.22 no.3 s.56
    • /
    • pp.208-212
    • /
    • 1983
  • Sixteen recommended soybean cultivars in Korea were tested for resistance to Heterodera glycines. The nubmer of females which developed on roots of cultivars were fewer on 'Hwanggeum kong' and greater on 'Geumgangdaelib'. But there was no resistant cultivar to Heterodera glycines. Four field populations of Heterodera glycines tested for ability to reproduce on five host differentials. Geographical differentiations of H. glycines were newly founded in Korea. These were identlified to race 1 at Hwasun, race 5 at Yangsan and Suweon and Unknown race(or race C) at Seonsan.

  • PDF

Root-knot Nematode Species Distributing in Greenhouses and Their Simple Identification Scheme (시설원예지에 분포하는 뿌리혹선충의 종류 및 간이 동정법)

  • 김동근;이영기;박병용
    • Research in Plant Disease
    • /
    • v.7 no.1
    • /
    • pp.49-55
    • /
    • 2001
  • Species and races of root-knot nematodes in greenhouses in southern Korea were investigated and a simple identification scheme was provided. Among 23 populations of root-knot nematodes, Meloidogyne arenaria race 2 was 59%, M. incognita race 1 was 23%, and an unknown race of M. incognita was 18%. Total length of M. arenaria juveniles was 411㎛(306-503㎛) and that of M. incognita was 384㎛(312-488㎛); however, the ranges of two species were overlapped and could not be used to distinguish the two species. Excretory pore in female head was a consistent character to differentiate M. arenaria and M. incognita.

  • PDF

Pathotype Classification of Korean Rice Blast Isolates Using Monogenic Lines for Rice Blast Resistance (벼 도열병 단일 저항성 유전자를 이용한 도열병균의 병원형 분류)

  • Kim, Yangseon;Kang, In Jeong;Shim, Hyeong-Kwon;Roh, Jae-Hwan
    • Research in Plant Disease
    • /
    • v.23 no.3
    • /
    • pp.249-255
    • /
    • 2017
  • The rice blast fungus is a representative model phytopathogenic fungus in which Gene-for-Gene interaction with host rice is applicable. After 1980, eight differential varieties have been constructed and classified to analyze the race of rice blast isolates in Korea. However, since there is limited information about the genetic background of rice blast resistance genes within the Korean differentials, scientific analysis on the emergence of new race or resistance break down was difficult. Recently, a differential system has been developed using monogenic resistance lines to understand the interactions of pathogen race and rice resistance genes. In this study, a total of 50 isolates were selected from four different races isolated in Korea, and they were inoculated into monogenic lines. As a result, the isolates in the same race classified by the Korean differential system reacted differently in single monogenic lines. This suggests that the isolates categorized as the same race group contains different avirulence genes and furthermore, it is presumed that the Korean differential system is difficult to provide useful information for breeding program. For this reason, introduction of differential system using monogenic resistance lines is required in addition to the current system.

Development of an Efficient Method of Screening for Watermelon Plants Resistant to Fusarium oxysporum f. sp. niveum (수박 덩굴쪼김병에 대한 효율적인 저항성 검정법 개발)

  • Jo, Eun Ju;Lee, Ji Hyun;Choi, Yong Ho;Kim, Jin-Cheol;Choi, Gyung Ja
    • Horticultural Science & Technology
    • /
    • v.33 no.3
    • /
    • pp.409-419
    • /
    • 2015
  • This study was conducted to establish an efficient screening method for watermelon plants resistant to Fusarium wilt (FW), which is caused by Fusarium oxysporum f. sp. niveum (Fon). An HA isolate was prepared from a wilted watermelon plant in Haman-gun and identified as F. oxysporum f. sp. niveum based on morphological characteristics, molecular analyses of ITS (internal transcribed spacer) and TEF (translation elongation factor $1{\alpha}$) sequences, and host specificity on cucurbits including watermelon, melon, oriental melon, and cucumber. The assay for disease response of watermelon differentials indicated that the HA isolate was race 0. Among seven liquid media tested, the highest amount of Fon spores was produced from V8-juice broth, which was selected as a medium for mass production of Fon. The disease assay for 21 watermelon and 11 watermelon-rootstock cultivars demonstrated that 20 watermelon cultivars except for 'Soknoranggul' were susceptible; 'Soknoranggul' was moderately resistant. All the tested rootstock cultivars were highly resistant to the HA isolate. The evaluation of disease development depending on various conditions suggested that an efficient screening method for FW resistance in watermelon plants is to dip the roots of 10-day-old seedlings in spore suspension of $1.0{\times}10^5-1.0{\times}10^6conidia{\cdot}mL^{-1}$ for 30 min., to transplant the seedlings to plastic pots with a fertilized soil, and then to cultivate the plants at $25^{\circ}C$ for 3 weeks.

Development of Efficient Screening Methods for Melon Plants Resistant to Fusarium oxysporum f. sp. melonis (멜론 덩굴쪼김병에 대한 효율적인 저항성 검정법 개발)

  • Lee, Won Jeong;Lee, Ji Hyun;Jang, Kyoung Soo;Choi, Yong Ho;Kim, Heung Tae;Choi, Gyung Ja
    • Horticultural Science & Technology
    • /
    • v.33 no.1
    • /
    • pp.70-82
    • /
    • 2015
  • This study was conducted to establish an efficient screening system to identify melon resistant to Fusarium oxysporum f. sp. melonis. F. oyxsporum f. sp. melonis GR was isolated from infected melon plants collected at Goryeong and identified as F. oxysporum f. sp. melonis based on morphological characteristics, molecular analyses, and host-specificity tests on cucurbits including melon, oriental melon, cucumber, and watermelon. In addition, the GR isolate was determined as race 1 based on resistance responses of melon differentials to the fungus. To select optimized medium for mass production of inoculum of F. oxysporum f. sp. melonis GR, six media were tested. The fungus produced the most spores (microconidia) in V8-juice broth. Resistance degrees to the GR isolate of 22 commercial melon cultivars and 6 rootstocks for melon plants were investigated. All tested rootstocks showed no symptoms of Fusarium wilt. Among the tested melon cultivars, only three cultivars were susceptible and the other cultivars displayed moderate to high resistance to the GR isolate. For further study, six melon cultivars (Redqueen, Summercool, Superseji, Asiapapaya, Eolukpapaya, and Asiahwanggeum) showing different degrees of resistance to the fungus were selected. The development of Fusarium wilt on the cultivars was tested according to several conditions such as plant growth stage, root wounding, dipping period of roots in spore suspension, inoculum concentration, and incubation temperature to develop the disease. On the basis of the test results, we suggest that an efficient screening method for melon plants resistant to F. oxysporum f. sp. melonis is to remove soil from roots of seven-day-old melon seedlings, to dip the seedlings without cutting in s pore s uspension of $3{\times}10^5conidia/mL$ for 30 min, to transplant the inoculated seedlings to plastic pots with horticulture nursery media, and then to cultivate the plants in a growth room at 25 to $28^{\circ}C$ for about 3 weeks with 12-hour light per day.