• Title/Summary/Keyword: host cells

Search Result 1,067, Processing Time 0.027 seconds

Expression of a $\beta$-1,3-Glucanase Gene from Bacillus circulans in B. subtilis and B. megaterium (Bacillus subtilis와 Bacillus megaterium에서의 $\beta$-1,3-glucanase 유전자의 발현)

  • 김기훈;김지연;김한복;이동석
    • Korean Journal of Microbiology
    • /
    • v.37 no.4
    • /
    • pp.253-258
    • /
    • 2001
  • A Bacillus circulans KCTC3004 $\beta$-1,3-glucanase gene contained in a recombinant plasmid pLM460 derived from subcloning the original recombinant plasmid pLM530 was trasferred into a new shuttle vector plasmid pLMS1180 by ligating linearized DNAs of pLM460 and pUB110. B. subtilis RM125 and B. megaterium ATCC14945 transformed with pLMS1180 produced the $\beta$-1,3-glucanase substantially. Most of the enzyme was produced during the exponential growth period. The maxium activities of the $\beta$-1,3-glucanase produced by the Bacillus transformants were compared with that of the B. circulans gene donor strain. The B. subtilis RM125 (pLM1180) enzyme showed the activity 14 times higher than that of the gene donor cells, followed by the B. megaterium ATCC14945 (pLMS 1180) enzyme with activity 5 times higher than that of the gene donor cells. While E. coli secreted about 7% of the produced enzyme, B. subtilis excreted the enzyme into the medium wholly and B. megaterium about 97% of the total product. The SDS-PAGE of this enzyme produced in E. coli (pLMS1180), B subtilis (pLMS1180) or B. megaterium (pLMS1180) indicated a molecular weight of 38,000. The enzymes overproduced in three different host cells hydrolyzed laminarin to produce mainly laminaribiose, laminaritriose, and laminarioligosaccharides. The plasmid pLMS1180 was stable in B. megaterium, E. coli, but was unstable in B. subtilis.

  • PDF

The Effect of Acute Sinusitis on the Ultrastructure and Sialic Acid Distribution on the Sinus Mucosa Cell Surface of the Rabbit (실험토끼 상악동염이 상피세포 표면의 미세구조변화와 Sialic acid의 분포에 미치는 영향)

  • Kim, Soo-Jin;Lee, Eun-Jung
    • Applied Microscopy
    • /
    • v.32 no.2
    • /
    • pp.163-170
    • /
    • 2002
  • Experimatal maxillary sinusitis was induced in New Zealand white rabbits by blocking the maxillary sinus ostium. The distribution of lectin receptors was explored in the mucosa with induced maxillary sinusitis using colloidal gold label complex with lectin WGA purified from wheat germ (Triticum vulgaris). The lectin WGA gold complex, shown to recognize GlcNac (N-acetylglucosamine) and NeuNAc (N-acetylneuraminic acid) regions, was applied to detect binding sites in Lowicryl HM 20 sections and viewed under the electron microscope. An increased height of the cylindric cells, ciliary loss and hyperplasia of the secretory cells were observed. Examination of normal sinus mucosa labeled with gold-labeled lectins showed the distribution of sialoglycoconjugates to be mainly in the ciliary layer and the granules in the secretory cells. Inflamed mucosa had increased labeling intensity of gold-labeled WGA in the cilia and the secretory granules. These results indicate that lectin WGA receptors are located in the cilia and secretory granules. Specific changes in the lectin binding pattern were apparent in the inflamed mucosa in the experimentally induced acute sinusitis, in comparison with normal mucosa, conceivably as a part of host defense reactions.

Novel Sporichthyaceae Bacterium Strain K-07 Skin Barrier, Moisturizing and Anti-inflammatory Activity (신규 Sporichthyaceae Bacterium Strain K-07 배양액의 피부장벽, 보습 및 항염증 활성)

  • Lee, Dong-Geol;Kim, Minji;Kang, Seunghyun;Kim, Youn-Joon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.43 no.2
    • /
    • pp.137-147
    • /
    • 2017
  • The human skin is an ecosystem that provides habitat to various microorganisms. These comprise the skin microbiome and provide numerous benefits in addition to maintaining a symbiotic relation with the host. Various metabolites generated by the skin microbiome exert beneficial effects such as strengthening the skin barrier, and anti-aging and anti-inflammatory functions. In this study, we isolated a novel bacterium, designated Sporichthyacae strain K-07, from the human skin. Analysis of 16S rRNA gene sequences showed that the newly found bacterium shares 93.4% homology with the genus Sporichthya, thus corroborating the discovery of a novel genus. We further analyzed the effect of the novel strain in vitro, by treating HaCaT cells with bacterial metabolite products. Treatment resulted in changes in the mRNA expression levels of filaggrin, claudin1, claudin4, SMase, CERS3, HAS3, aquaporin3, IL-6, TNF-${\alpha}$, TSLP, and TARC. Specifically, the levels of filaggrin, claudin1, claudin4, SMase, CERS3, HAS3, and aquaporin3 were higher in strain K-07 metabolite product-treated cells than in control cells. These results showed that metabolite products of the novel strain K-07 enhanced the skin barrier and exert anti-inflammatory effects. Therefore, these metabolite products could be potentially used for treatment of skin conditions.

The Role of Protein Kinase C and Protein Tyrosine Kinase in the Signal Transduction Pathway of Stimulus Induced by Endotoxin in Peripheral Blood Monocyte (말초혈액 단핵구에 대한 내독소 자극의 신호 전달에서 Protein Kinase C와 Protein Tyrosine Kinase의 역할)

  • Kim, Jae-Yeol;Park, Jae-Suk;Lee, Gwi-Lae;Yoo, Chul-Gyu;Kim, Young-Whan;Han, Sung-Koo;Shim, Young-Soo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.44 no.2
    • /
    • pp.338-348
    • /
    • 1997
  • Background : Endotoxin, the component of outermembrane of gram negative organism, plays an important role in the initiation and amplification of inflammatory reaction by its effects on inflammatory cells. Until recently, there have been continuing efforts to delinate the mechanisms of the signal trasduction pathway of endotoxin stimuli on inflammatory cells. By uncovering the mechanisms of signal transduction pathway of endotoxin stimuli, we can expect to have tools to control the excessive inflammatory responses which sometimes may be fatal to the involved host. It was generally accepted that endotoxin exerts its inflammatory effects through inflammatory cytokines that are produced by endotoxin-stimulated inflammatory cells and there were some reports on the importance of protein kinase C and protein tyrosine kinase activation in the production of inflammatory cytokines by endotoxin So we evaluated the effect of pretreatment of protein kinase C inhibitors (H7, Staurosporin) and protein tyrosine kinase inhibitors(Herbimycin, Genistein) on the endotoxin-stimulated cytokines(IL-8 & TNF-$\alpha$) mRNA expression. Method : Peripheral blood monocytes were isolated from healthy volunteers by Ficoll-Hypaque density gradient method and purified by adhesion to 60mm Petri dishes. Endotoxin(LPS 100ng/ml) was added to each dishes except one control dish, and each endotoxin-stimulated dishes was preincubated with H7, Staurosporin(protein kinase C inhibitor), Herbimycin or Genistein(protein tyrosine kinase inhibitor) respectively except one dish. Four hours later the endotoxin stimulation, total RNA was extracted and Northern blot analysis for IL-8 mRNA and TNF-$\alpha$ mRNA was done. Result : Endotoxin stimulation increased the expression of IL-8 mRNA and TNF-$\alpha$ mRNA expression in human peripheral blood monocyte as expected and the stimulatory effect of endotoxin on TNF-$\alpha$ mRNA expression was inhibited by protein kinase C inhibitors(H7, Staurosporin) and protein tyrosine kinase inhibitors (Herbimycin, Genistein). The inhibitory effect of each drugs was increased with increasing concentration. The stimulatory effect of endotoxin on IL-8 mRNA was also inhibited by H7 and protein tyrosine kinase inhibitors (Herbimycin, Genistein) dose-dependently but not by Staurosporin. Conclusion : Protein kinase C and protein tyrosine kinase are involved in the endotoxin induced signal transduction pathway in human peripheral blood monocyte.

  • PDF

Cloning and Expression of an $\alpha$-Amylase Gene from Bacillus circulans in B. subtilis and B. megaterium (Bacillus circulans $\alpha$-amylase 유전자의 Basillus subtilis와 Bacillus megaterium에서의 클로닝 및 발현)

  • 이동석;김지연;김한복
    • Korean Journal of Microbiology
    • /
    • v.36 no.3
    • /
    • pp.203-208
    • /
    • 2000
  • A Baczllus circdans KCTC3004 $\alpha$-amylase gene contained in a recombinant plasmid pAL850 was transferred into a new shuttle vector plasmid pALSIlI by ligating linearlzed DNAs of pUC19 and pUB110. B. subtilis RM125 and B. megatenurn ATCC14945 transfonned with pALS111 produced the $\alpha$-amylase substantially Most of the enzyme was produced during the exponential growth period. The maxiinurn activities of the $\alpha$-amylase produced by the Bucillus transformants were compared with that of the B. circulans gene donor strain. The B. subtilis RM125(pALS111) enzyme showed the actlvicy 95 times higher than that of the gene donor cells, followed by the B, nzegaterium ATCC14945(pALSlll) enzyme with activity 34 limes higher than that of the gene donor cells. While E coli secreted about 10% of the produced enzyme, B. subtilis excreted the enzyme inlo the medium wholly and B. megaterirun about 98% ofthe total product. The plasmid pALSI11 was quite stable inB. nzegaterium (92%), inoderately stable in B. subtilis (76%), but was unstable in E. coli (38%). The SDS-PAGE and zymogram of this enzyme produced in E. coli(pALS111), B. subtilis( pALS111) or B. megateril~m (pALS111) indicated a molecular weight of 55,000. The enzymes overproduced in three different host cells hydrolyzed starch to produce mainly maltoaiose and mallooligosaccharides.

  • PDF

Anti-tuberculosis effects of frankincense through immune responses of Mycobacterium tuberculosis-infected macrophages (결핵균이 감염된 대식세포의 면역반응을 통한 유향(Frankincense)의 항결핵효과)

  • Son, Eun-Soon;Lee, Sun Kyoung;Cho, Sang-Nae;Park, Hae-Ryoung;Lee, Jong Seok
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.6
    • /
    • pp.756-760
    • /
    • 2021
  • Frankincense has been used as a traditional medicine for treating rheumatoid arthritis, dermatitis, and muscle pain. In this study, the anti-tuberculosis effects of Frankincense were evaluated in immune responses of macrophages. Frankincense methanol extract was not cytotoxic to the host. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction assay using human macrophage (THP-1) cells did not show cytotoxic effects or morphological changes with treatments of 31.3, 62.5, and 125 ㎍/mL Frankincense methanol extract (FRM). Inhibitory effects of Frankincense methanol extract on the growth of Mycobacterium tuberculosis in human macrophages were investigated. The immune response was measured by monitoring the levels of TNF-α and IL-1β in THP-1 cells with or without M. tuberculosis infection under Frankincense methanol extract treatment. Inflammatory cytokine levels and M. tuberculosis numbers were reduced in THP-1 cells treated with Frankincense methanol extract. Therefore, Frankincense methanol extract could be used as a potential anti-tuberculosis agent.

Transforming Growth Factor β Inhibits MUC5AC Expression by Smad3/HDAC2 Complex Formation and NF-κB Deacetylation at K310 in NCI-H292 Cells

  • Lee, Su Ui;Kim, Mun-Ock;Kang, Myung-Ji;Oh, Eun Sol;Ro, Hyunju;Lee, Ro Woon;Song, Yu Na;Jung, Sunin;Lee, Jae-Won;Lee, Soo Yun;Bae, Taeyeol;Hong, Sung-Tae;Kim, Tae-Don
    • Molecules and Cells
    • /
    • v.44 no.1
    • /
    • pp.38-49
    • /
    • 2021
  • Airway mucus secretion is an essential innate immune response for host protection. However, overproduction and hypersecretion of mucus, mainly composed of the gel-forming MUC5AC protein, are significant risk factors for patients with asthma and chronic obstructive pulmonary disease (COPD). The transforming growth factor β (TGFβ) signaling pathway negatively regulates MUC5AC expression; however, the underlying molecular mechanism is not fully understood. Here, we showed that TGFβ significantly reduces the expression of MUC5AC mRNA and its protein in NCI-H292 cells, a human mucoepidermoid carcinoma cell line. This reduced MUC5AC expression was restored by a TGFβ receptor inhibitor (SB431542), but not by the inhibition of NF-κB (BAY11-7082 or Triptolide) or PI3K (LY294002) activities. TGFβ-activated Smad3 dose-dependently bound to MUC5AC promoter. Notably, TGFβ-activated Smad3 recruited HDAC2 and facilitated nuclear translocation of HDAC2, thereby inducing the deacetylation of NF-κB at K310, which is essential for a reduction in NF-κB transcriptional activity. Both TGFβ-induced nuclear translocation of Smad3/HDAC2 and deacetylation of NF-κB at K310 were suppressed by a Smad3 inhibitor (SIS3). These results suggest that the TGFβ-activated Smad3/HDAC2 complex is an essential negative regulator for MUC5AC expression and an epigenetic regulator for NF-κB acetylation. Therefore, these results collectively suggest that modulation of the TGFβ1/Smad3/HDAC2/NF-κB pathway axis can be a promising way to improve lung function as a treatment strategy for asthma and COPD.

Molecular Analysis of the Interaction between Human PTPN21 and the Oncoprotein E7 from Human Papillomavirus Genotype 18

  • Lee, Hye Seon;Kim, Min Wook;Jin, Kyeong Sik;Shin, Ho-Chul;Kim, Won Kon;Lee, Sang Chul;Kim, Seung Jun;Lee, Eun-Woo;Ku, Bonsu
    • Molecules and Cells
    • /
    • v.44 no.1
    • /
    • pp.26-37
    • /
    • 2021
  • Human papillomaviruses (HPVs) cause cellular hyperproliferation-associated abnormalities including cervical cancer. The HPV genome encodes two major viral oncoproteins, E6 and E7, which recruit various host proteins by direct interaction for proteasomal degradation. Recently, we reported the structure of HPV18 E7 conserved region 3 (CR3) bound to the protein tyrosine phosphatase (PTP) domain of PTPN14, a well-defined tumor suppressor, and found that this intermolecular interaction plays a key role in E7-driven transformation and tumorigenesis. In this study, we carried out a molecular analysis of the interaction between CR3 of HPV18 E7 and the PTP domain of PTPN21, a PTP protein that shares high sequence homology with PTPN14 but is putatively oncogenic rather than tumor-suppressive. Through the combined use of biochemical tools, we verified that HPV18 E7 and PTPN21 form a 2:2 complex, with a dissociation constant of 5 nM and a nearly identical binding manner with the HPV18 E7 and PTPN14 complex. Nevertheless, despite the structural similarities, the biological consequences of the E7 interaction were found to differ between the two PTP proteins. Unlike PTPN14, PTPN21 did not appear to be subjected to proteasomal degradation in HPV18-positive HeLa cervical cancer cells. Moreover, knockdown of PTPN21 led to retardation of the migration/invasion of HeLa cells and HPV18 E7-expressing HaCaT keratinocytes, which reflects its protumor activity. In conclusion, the associations of the viral oncoprotein E7 with PTPN14 and PTPN21 are similar at the molecular level but play different physiological roles.

Molecular Signatures in Chicken Lungs Infected with Avian Influenza Viruses

  • Jeong Woong Park;Marc Ndimukaga;Jaeyoung Heo;Ki-Duk Song
    • Korean Journal of Poultry Science
    • /
    • v.50 no.4
    • /
    • pp.193-202
    • /
    • 2023
  • Influenza IAVs are encapsulated negative-strand RNA viruses that infect many bird species' respiratory systems and can spread to other animals, including humans. This work reanalyzed previous microarray datasets to identify common and specific differentially expressed genes (DEGs) in chickens, as well as their biological activities. There were 760 and 405 DEGs detected in HPAIV and LPAIV-infected chicken cells, respectively. HPAIV and LPAIV have 670 and 315 DEGs, respectively, with both viruses sharing 90 DEGs. Because of HPAIV infection, numerous genes were implicated in a fundamental biological function of the cell cycle, according to the functional annotation of DEGs. Of the targeted genes, expressions of CDC Like Kinase 3 (CLK3), Nucleic Acid Binding Protein 1 (NABP1), Interferon-Inducible Protein 6 (IFI6), PIN2 (TERF1) Interacting Telomerase Inhibitor 1 (PINX1), and Cellular Communication Network Factor 4 (WISP1) were altered in DF-1 cells treated with polyinosinic:polycytidylic acid (PIC), a toll-like receptor 3 (TLR3) ligand, suggesting that transcription of these genes be controlled by TLR3 signaling. To gain a better understanding of the pathophysiology of AIVs in chickens, it is crucial to focus more research on unraveling the mechanisms through which AIV infections may manipulate host responses during the infection process. Insights into these mechanisms could facilitate the development of novel therapeutic strategies.

Regulation of Gb3 Expression on Dendritic Cells (수지상세포에 있어서 베로독소 수용체의 발현조절)

  • Lim, Suk-Hwan;Kim, Gi-Young;Kim, Hyung-Chun;Kim, Young-Hee;Son, Yong-Hae;Oh, Yang-Hyo;Park, Yeong-Min
    • Journal of Life Science
    • /
    • v.17 no.4 s.84
    • /
    • pp.482-492
    • /
    • 2007
  • Infection with Shiga-like toxin (SLT)-producing Escherichia coli causes a spectrum of illnesses with high morbidity and mortality. Host mediators play an important role in the pathogenesis of SLT-I toxicity. We here investigated the effect of SLT-I on tumor necrosis $factor-{\alpha}\;(TNF-{\alpha})$ production, effect of $TNF-{\alpha}$ on glycolipid globotriaosyleramide (Gb3) expression, and relationship between Gb3 level and differential susceptibility of cells to SLT-I. In this study, we observed that detectable levels of $TNF-{\alpha}$ are produced 6 hrs after induction and continued to increase during 48 hrs by SLT-I. It was also found that Vero cells and dendritic cells expressed high levels of Gb3, 83% and 68%, respectively, and that macrophages had a low level of Gb3 (29%) and showed refractory to cytotoxicity against SLT-I. Vero cells and dendritic cells expressing high levels of Gb3 were highly susceptible to SLT-I. furthermore, macrophages showed a resistance to SLT-I cytotoxicity, despite the fact that Gb3 expression was enhanced. These results suggest that the expression of Gb3 is necessary, but not sufficient to confer sensitivity of macrophages to SLT-I and further underpin the important role of SLT-I and its receptor, Gb3, in the pathogenesis of E. coli O157 infection.