DOI QR코드

DOI QR Code

Molecular Analysis of the Interaction between Human PTPN21 and the Oncoprotein E7 from Human Papillomavirus Genotype 18

  • Lee, Hye Seon (Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Min Wook (Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Jin, Kyeong Sik (Pohang Accelerator Laboratory, Pohang University of Science and Technology) ;
  • Shin, Ho-Chul (Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Won Kon (Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Lee, Sang Chul (Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Seung Jun (Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Lee, Eun-Woo (Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Ku, Bonsu (Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology)
  • Received : 2020.08.14
  • Accepted : 2020.12.08
  • Published : 2021.01.31

Abstract

Human papillomaviruses (HPVs) cause cellular hyperproliferation-associated abnormalities including cervical cancer. The HPV genome encodes two major viral oncoproteins, E6 and E7, which recruit various host proteins by direct interaction for proteasomal degradation. Recently, we reported the structure of HPV18 E7 conserved region 3 (CR3) bound to the protein tyrosine phosphatase (PTP) domain of PTPN14, a well-defined tumor suppressor, and found that this intermolecular interaction plays a key role in E7-driven transformation and tumorigenesis. In this study, we carried out a molecular analysis of the interaction between CR3 of HPV18 E7 and the PTP domain of PTPN21, a PTP protein that shares high sequence homology with PTPN14 but is putatively oncogenic rather than tumor-suppressive. Through the combined use of biochemical tools, we verified that HPV18 E7 and PTPN21 form a 2:2 complex, with a dissociation constant of 5 nM and a nearly identical binding manner with the HPV18 E7 and PTPN14 complex. Nevertheless, despite the structural similarities, the biological consequences of the E7 interaction were found to differ between the two PTP proteins. Unlike PTPN14, PTPN21 did not appear to be subjected to proteasomal degradation in HPV18-positive HeLa cervical cancer cells. Moreover, knockdown of PTPN21 led to retardation of the migration/invasion of HeLa cells and HPV18 E7-expressing HaCaT keratinocytes, which reflects its protumor activity. In conclusion, the associations of the viral oncoprotein E7 with PTPN14 and PTPN21 are similar at the molecular level but play different physiological roles.

Keywords

Acknowledgement

SAXS measurements were performed at the beamline 4C at the Pohang Accelerator Laboratory in Korea. We appreciate Dr. Eunha Hwang (Korea Basic Science Institute, Korea) for help with the SEC-MALS measurements and Dr. Jungwon Hwang and Dr. Myung Hee Kim (Korea Research Institute of Bioscience and Biotechnology, Korea) for help with the ITC measurements. This study was supported by the National Research Foundation of Korea (NRF_2020R1C1C1008451 and NRF_2019M3E5D6063955 to B.K., NRF_2017M3A9G5083321 to S.C.L., and NRF_2019R1C1C1002831 to E.W.L.) and the KRIBB Research Initiative Programs (to B.K.), which were funded by the Ministry of Science and ICT (MSIT) of Republic of Korea.

References

  1. Avvakumov, N., Torchia, J., and Mymryk, J.S. (2003). Interaction of the HPV E7 proteins with the pCAF acetyltransferase. Oncogene 22, 3833-3841. https://doi.org/10.1038/sj.onc.1206562
  2. Berezutskaya, E. and Bagchi, S. (1997). The human papillomavirus E7 oncoprotein functionally interacts with the S4 subunit of the 26 S proteasome. J. Biol. Chem. 272, 30135-30140. https://doi.org/10.1074/jbc.272.48.30135
  3. Bodily, J.M., Mehta, K.P., and Laimins, L.A. (2011). Human papillomavirus E7 enhances hypoxia-inducible factor 1-mediated transcription by inhibiting binding of histone deacetylases. Cancer Res. 71, 1187-1195. https://doi.org/10.1158/0008-5472.CAN-10-2626
  4. Brehm, A., Nielsen, S.J., Miska, E.A., McCance, D.J., Reid, J.L., Bannister, A.J., and Kouzarides, T. (1999). The E7 oncoprotein associates with Mi2 and histone deacetylase activity to promote cell growth. EMBO J. 18, 2449-2458. https://doi.org/10.1093/emboj/18.9.2449
  5. Carlucci, A., Gedressi, C., Lignitto, L., Nezi, L., Villa-Moruzzi, E., Avvedimento, E.V., Gottesman, M., Garbi, C., and Feliciello, A. (2008). Protein-tyrosine phosphatase PTPD1 regulates focal adhesion kinase autophosphorylation and cell migration. J. Biol. Chem. 283, 10919-10929. https://doi.org/10.1074/jbc.M707248200
  6. Carlucci, A., Porpora, M., Garbi, C., Galgani, M., Santoriello, M., Mascolo, M., di Lorenzo, D., Altieri, V., Quarto, M., Terracciano, L., et al. (2010). PTPD1 supports receptor stability and mitogenic signaling in bladder cancer cells. J. Biol. Chem. 285, 39260-39270. https://doi.org/10.1074/jbc.M110.174706
  7. Carra, G., Lingua, M.F., Maffeo, B., Taulli, R., and Morotti, A. (2020). P53 vs NF-κB: the role of nuclear factor-kappa B in the regulation of p53 activity and vice versa. Cell. Mol. Life Sci. 77, 4449-4458. https://doi.org/10.1007/s00018-020-03524-9
  8. Cho, Y.C., Kim, B.R., and Cho, S. (2017). Protein tyrosine phosphatase PTPN21 acts as a negative regulator of ICAM-1 by dephosphorylating IKKβ in TNF-α-stimulated human keratinocytes. BMB Rep. 50, 584-589. https://doi.org/10.5483/BMBRep.2017.50.11.169
  9. Hatterschide, J., Bohidar, A.E., Grace, M., Nulton, T.J., Kim, H.W., Windle, B., Morgan, I.M., Munger, K., and White, E.A. (2019). PTPN14 degradation by high-risk human papillomavirus E7 limits keratinocyte differentiation and contributes to HPV-mediated oncogenesis. Proc. Natl. Acad. Sci. U. S. A. 116, 7033-7042. https://doi.org/10.1073/pnas.1819534116
  10. Huang, J.M., Nagatomo, I., Suzuki, E., Mizuno, T., Kumagai, T., Berezov, A., Zhang, H., Karlan, B., Greene, M.I., and Wang, Q. (2013). YAP modifies cancer cell sensitivity to EGFR and survivin inhibitors and is negatively regulated by the non-receptor type protein tyrosine phosphatase 14. Oncogene 32, 2220-2229. https://doi.org/10.1038/onc.2012.231
  11. Huh, K., Zhou, X., Hayakawa, H., Cho, J.Y., Libermann, T.A., Jin, J., Harper, J.W., and Munger, K. (2007). Human papillomavirus type 16 E7 oncoprotein associates with the cullin 2 ubiquitin ligase complex, which contributes to degradation of the retinoblastoma tumor suppressor. J. Virol. 81, 9737-9747. https://doi.org/10.1128/JVI.00881-07
  12. Jang, H., Park, S., Kim, J., Kim, J.H., Kim, S.Y., Cho, S., Park, S.G., Park, B.C., Kim, S., and Kim, J.H. (2020). The tumor suppressor, p53, negatively regulates non-canonical NF-κB signaling through miRNA-induced silencing of NF-κB-inducing kinase. Mol. Cells 43, 23-33. https://doi.org/10.14348/molcells.2019.0239
  13. Kim, K.W., Kim, J., Yun, Y.D., Ahn, H., Min, B., Kim, N.H., Rah, S., Kim, H.Y., Lee, C.S., Seo, I.D., et al. (2017). Small-angle X-ray scattering beamline BL4C SAXS at Pohang Light Source II. Biodesign 5, 24-29.
  14. Kobayashi, K., Hisamatsu, K., Suzui, N., Hara, A., Tomita, H., and Miyazaki, T. (2018). A review of HPV-related head and neck cancer. J. Clin. Med. 7, 241. https://doi.org/10.3390/jcm7090241
  15. Kozin, M.B. and Svergun, D.I. (2001). Automated matching of high-and low-resolution structural models. J. Appl. Crystallogr. 34, 33-41. https://doi.org/10.1107/S0021889800014126
  16. Lee, J.O., Russo, A.A., and Pavletich, N.P. (1998). Structure of the retinoblastoma tumour-suppressor pocket domain bound to a peptide from HPV E7. Nature 391, 859-865. https://doi.org/10.1038/36038
  17. Liu, X., Clements, A., Zhao, K., and Marmorstein, R. (2006). Structure of the human Papillomavirus E7 oncoprotein and its mechanism for inactivation of the retinoblastoma tumor suppressor. J. Biol. Chem. 281, 578-586. https://doi.org/10.1074/jbc.M508455200
  18. Liu, X., Yang, N., Figel, S.A., Wilson, K.E., Morrison, C.D., Gelman, I.H., and Zhang, J. (2013). PTPN14 interacts with and negatively regulates the oncogenic function of YAP. Oncogene 32, 1266-1273. https://doi.org/10.1038/onc.2012.147
  19. Martinez-Zapien, D., Ruiz, F.X., Poirson, J., Mitschler, A., Ramirez, J., Forster, A., Cousido-Siah, A., Masson, M., Vande Pol, S., Podjarny, A., et al. (2016). Structure of the E6/E6AP/p53 complex required for HPV-mediated degradation of p53. Nature 529, 541-545. https://doi.org/10.1038/nature16481
  20. Mello, S.S., Valente, L.J., Raj, N., Seoane, J.A., Flowers, B.M., McClendon, J., Bieging-Rolett, K.T., Lee, J., Ivanochko, D., Kozak, M.M., et al. (2017). A p53 super-tumor suppressor reveals a tumor suppressive p53-Ptpn14-Yap axis in pancreatic cancer. Cancer Cell 32, 460-473. https://doi.org/10.1016/j.ccell.2017.09.007
  21. Michaloglou, C., Lehmann, W., Martin, T., Delaunay, C., Hueber, A., Barys, L., Niu, H., Billy, E., Wartmann, M., Ito, M., et al. (2013). The tyrosine phosphatase PTPN14 is a negative regulator of YAP activity. PLoS One 8, e61916. https://doi.org/10.1371/journal.pone.0061916
  22. Mittal, S. and Banks, L. (2017). Molecular mechanisms underlying human papillomavirus E6 and E7 oncoprotein-induced cell transformation. Mutat. Res. Rev. Mutat. Res. 772, 23-35. https://doi.org/10.1016/j.mrrev.2016.08.001
  23. Munger, K., Werness, B.A., Dyson, N., Phelps, W.C., Harlow, E., and Howley, P.M. (1989). Complex formation of human papillomavirus E7 proteins with the retinoblastoma tumor suppressor gene product. EMBO J. 8, 4099-4105. https://doi.org/10.1002/j.1460-2075.1989.tb08594.x
  24. Munoz, N., Bosch, F.X., de Sanjose, S., Herrero, R., Castellsague, X., Shah, K.V., Snijders, P.J., Meijer, C.J., and International Agency for Research on Cancer Multicenter Cervical Cancer Study Group. (2003). Epidemiologic classification of human papillomavirus types associated with cervical cancer. N. Engl. J. Med. 348, 518-527. https://doi.org/10.1056/NEJMoa021641
  25. Ohlenschlager, O., Seiboth, T., Zengerling, H., Briese, L., Marchanka, A., Ramachandran, R., Baum, M., Korbas, M., Meyer-Klaucke, W., Durst, M., et al. (2006). Solution structure of the partially folded high-risk human papilloma virus 45 oncoprotein E7. Oncogene 25, 5953-5959. https://doi.org/10.1038/sj.onc.1209584
  26. Pal, S., Bhattacharjee, A., Ali, A., Mandal, N.C., Mandal, S.C., and Pal, M. (2014). Chronic inflammation and cancer: potential chemoprevention through nuclear factor kappa B and p53 mutual antagonism. J. Inflamm. 11, 23. https://doi.org/10.1186/1476-9255-11-23
  27. Plani-Lam, J.H., Chow, T.C., Fan, Y.H., Garcia-Bloj, B., Cheng, L., Jin, D.Y., Hancock, W., Fanayan, S., Ingley, E., and Song, Y.Q. (2016). High expression of PTPN21 in B-cell non-Hodgkin's gastric lymphoma, a positive mediator of STAT5 activity. Blood Cancer J. 6, e388. https://doi.org/10.1038/bcj.2015.107
  28. Poirson, J., Biquand, E., Straub, M.L., Cassonnet, P., Nomine, Y., Jones, L., van der Werf, S., Trave, G., Zanier, K., Jacob, Y., et al. (2017). Mapping the interactome of HPV E6 and E7 oncoproteins with the ubiquitinproteasome system. FEBS J. 284, 3171-3201. https://doi.org/10.1111/febs.14193
  29. Roda-Navarro, P. and Bastiaens, P.I. (2014). Dynamic recruitment of protein tyrosine phosphatase PTPD1 to EGF stimulation sites potentiates EGFR activation. PLoS One 9, e103203. https://doi.org/10.1371/journal.pone.0103203
  30. Rozenblatt-Rosen, O., Deo, R.C., Padi, M., Adelmant, G., Calderwood, M.A., Rolland, T., Grace, M., Dricot, A., Askenazi, M., Tavares, M., et al. (2012). Interpreting cancer genomes using systematic host network perturbations by tumour virus proteins. Nature 487, 491-495. https://doi.org/10.1038/nature11288
  31. Schneider, G., Henrich, A., Greiner, G., Wolf, V., Lovas, A., Wieczorek, M., Wagner, T., Reichardt, S., von Werder, A., Schmid, R.M., et al. (2010). Cross talk between stimulated NF-κB and the tumor suppressor p53. Oncogene 29, 2795-2806. https://doi.org/10.1038/onc.2010.46
  32. Semenyuk, A.V. and Svergun, D.I. (1991). GNOM - a program package for small-angle scattering data processing. J. Appl. Crystallogr. 24, 537-540. https://doi.org/10.1107/S002188989100081X
  33. Svergun, D., Barberato, C., and Koch, M.H.J. (1995). CRYSOL - a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates. J. Appl. Crystallogr. 28, 768-773. https://doi.org/10.1107/S0021889895007047
  34. Svergun, D.I., Petoukhov, M.V., and Koch, M.H. (2001). Determination of domain structure of proteins from X-ray solution scattering. Biophys. J. 80, 2946-2953. https://doi.org/10.1016/S0006-3495(01)76260-1
  35. Szalmas, A., Tomaic, V., Basukala, O., Massimi, P., Mittal, S., Konya, J., and Banks, L. (2017). The PTPN14 tumor suppressor is a degradation target of human papillomavirus E7. J. Virol. 91, e00057-17.
  36. Todorovic, B., Hung, K., Massimi, P., Avvakumov, N., Dick, F.A., Shaw, G.S., Banks, L., and Mymryk, J.S. (2012). Conserved region 3 of human papillomavirus 16 E7 contributes to deregulation of the retinoblastoma tumor suppressor. J. Virol. 86, 13313-13323. https://doi.org/10.1128/JVI.01637-12
  37. Tommasino, M. (2014). The human papillomavirus family and its role in carcinogenesis. Semin. Cancer Biol. 26, 13-21. https://doi.org/10.1016/j.semcancer.2013.11.002
  38. Tumban, E. (2019). A current update on human papillomavirus-associated head and neck cancers. Viruses 11, 922. https://doi.org/10.3390/v11100922
  39. Wang, X., Huang, X., and Zhang, Y. (2018). Involvement of human papillomaviruses in cervical cancer. Front. Microbiol. 9, 2896. https://doi.org/10.3389/fmicb.2018.02896
  40. Werness, B.A., Levine, A.J., and Howley, P.M. (1990). Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science 248, 76-79. https://doi.org/10.1126/science.2157286
  41. White, E.A., Munger, K., and Howley, P.M. (2016). High-risk human papillomavirus E7 proteins target PTPN14 for degradation. mBio 7, e01530-16.
  42. White, E.A., Sowa, M.E., Tan, M.J., Jeudy, S., Hayes, S.D., Santha, S., Munger, K., Harper, J.W., and Howley, P.M. (2012). Systematic identification of interactions between host cell proteins and E7 oncoproteins from diverse human papillomaviruses. Proc. Natl. Acad. Sci. U. S. A. 109, E260-E267. https://doi.org/10.1073/pnas.1116776109
  43. Wilson, K.E., Li, Y.W., Yang, N., Shen, H., Orillion, A.R., and Zhang, J. (2014). PTPN14 forms a complex with Kibra and LATS1 proteins and negatively regulates the YAP oncogenic function. J. Biol. Chem. 289, 23693-23700. https://doi.org/10.1074/jbc.M113.534701
  44. Wu, Z.Z., Lu, H.P., and Chao, C.C. (2010). Identification and functional analysis of genes which confer resistance to cisplatin in tumor cells. Biochem. Pharmacol. 80, 262-276. https://doi.org/10.1016/j.bcp.2010.03.029
  45. Yun, H.Y., Kim, M.W., Lee, H.S., Kim, W., Shin, J.H., Kim, H., Shin, H.C., Park, H., Oh, B.H., Kim, W.K., et al. (2019). Structural basis for recognition of the tumor suppressor protein PTPN14 by the oncoprotein E7 of human papillomavirus. PLoS Biol. 17, e3000367. https://doi.org/10.1371/journal.pbio.3000367