DOI QR코드

DOI QR Code

Transforming Growth Factor β Inhibits MUC5AC Expression by Smad3/HDAC2 Complex Formation and NF-κB Deacetylation at K310 in NCI-H292 Cells

  • Lee, Su Ui (Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Mun-Ock (Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kang, Myung-Ji (Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Oh, Eun Sol (Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Ro, Hyunju (Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University) ;
  • Lee, Ro Woon (Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Song, Yu Na (Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Jung, Sunin (Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Lee, Jae-Won (Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Lee, Soo Yun (Immunotherapy Research Center, KRIBB) ;
  • Bae, Taeyeol (Immunotherapy Research Center, KRIBB) ;
  • Hong, Sung-Tae (Department of Anatomy & Cell Biology, Department of Medical Science, Chungnam National University College of Medicine) ;
  • Kim, Tae-Don (Immunotherapy Research Center, KRIBB)
  • Received : 2020.09.15
  • Accepted : 2021.01.12
  • Published : 2021.01.31

Abstract

Airway mucus secretion is an essential innate immune response for host protection. However, overproduction and hypersecretion of mucus, mainly composed of the gel-forming MUC5AC protein, are significant risk factors for patients with asthma and chronic obstructive pulmonary disease (COPD). The transforming growth factor β (TGFβ) signaling pathway negatively regulates MUC5AC expression; however, the underlying molecular mechanism is not fully understood. Here, we showed that TGFβ significantly reduces the expression of MUC5AC mRNA and its protein in NCI-H292 cells, a human mucoepidermoid carcinoma cell line. This reduced MUC5AC expression was restored by a TGFβ receptor inhibitor (SB431542), but not by the inhibition of NF-κB (BAY11-7082 or Triptolide) or PI3K (LY294002) activities. TGFβ-activated Smad3 dose-dependently bound to MUC5AC promoter. Notably, TGFβ-activated Smad3 recruited HDAC2 and facilitated nuclear translocation of HDAC2, thereby inducing the deacetylation of NF-κB at K310, which is essential for a reduction in NF-κB transcriptional activity. Both TGFβ-induced nuclear translocation of Smad3/HDAC2 and deacetylation of NF-κB at K310 were suppressed by a Smad3 inhibitor (SIS3). These results suggest that the TGFβ-activated Smad3/HDAC2 complex is an essential negative regulator for MUC5AC expression and an epigenetic regulator for NF-κB acetylation. Therefore, these results collectively suggest that modulation of the TGFβ1/Smad3/HDAC2/NF-κB pathway axis can be a promising way to improve lung function as a treatment strategy for asthma and COPD.

Keywords

Acknowledgement

This work was supported by the KRIBB Research Initiative Program funded by the Ministry of Science ICT (MSIT), the R&D Convergence Program of the National Research Council of Science and Technology (CAP-18-02KRIBB), and the National Research Foundation (NRF-2020R1A2C2006664 and NRF2020R1C1C1011146) of Republic of Korea.

References

  1. Alcorn, J.F., Rinaldi, L.M., Jaffe, E.F., van Loon, M., Bates, J.H.T., Janssen-Heininger, Y.M.W., and Irvin, C.G. (2007). Transforming growth factor-beta1 suppresses airway hyperresponsiveness in allergic airway disease. Am. J. Respir. Crit. Care Med. 176, 974-982. https://doi.org/10.1164/rccm.200702-334OC
  2. Anthoni, M., Wang, G., Leino, M.S., Lauerma, A.I., Alenius, H.T., and Wolff, H.J. (2007). Smad3 -signalling and Th2 cytokines in normal mouse airways and in a mouse model of asthma. Int. J. Biol. Sci. 3, 477-485.
  3. Ashburner, B.P., Westerheide, S.D., and Baldwin, A.S., Jr. (2001). The p65 (RelA) subunit of NF-kappaB interacts with the histone deacetylase (HDAC) corepressors HDAC1 and HDAC2 to negatively regulate gene expression. Mol. Cell. Biol. 21, 7065-7077. https://doi.org/10.1128/MCB.21.20.7065-7077.2001
  4. Bai, J. and Xi, Q. (2018). Crosstalk between TGF-beta signaling and epigenome. Acta Biochim. Biophys. Sin. (Shanghai) 50, 60-67. https://doi.org/10.1093/abbs/gmx122
  5. Barnes, P.J. (2009). Histone deacetylase-2 and airway disease. Ther. Adv. Respir. Dis. 3, 235-243. https://doi.org/10.1177/1753465809348648
  6. Barnes, P.J. (2011). Glucocorticosteroids: current and future directions. Br. J. Pharmacol. 163, 29-43. https://doi.org/10.1111/j.1476-5381.2010.01199.x
  7. Bonser, L.R. and Erle, D.J. (2017). Airway mucus and asthma: the role of MUC5AC and MUC5B. J. Clin. Med. 6, 112. https://doi.org/10.3390/jcm6120112
  8. Borchers, M.T., Wert, S.E., and Leikauf, G.D. (1998). Acrolein-induced MUC5ac expression in rat airways. Am. J. Physiol. 274, L573-L581.
  9. Branchett, W.J. and Lloyd, C.M. (2019). Regulatory cytokine function in the respiratory tract. Mucosal Immunol. 12, 589-600. https://doi.org/10.1038/s41385-019-0158-0
  10. Buerki, C., Rothgiesser, K.M., Valovka, T., Owen, H.R., Rehrauer, H., Fey, M., Lane, W.S., and Hottiger, M.O. (2008). Functional relevance of novel p300-mediated lysine 314 and 315 acetylation of RelA/p65. Nucleic Acids Res. 36, 1665-1680. https://doi.org/10.1093/nar/gkn003
  11. Caramori, G., Gregorio, C., Carlstedt, I., Casolari, P., Guzzinati, I., Adcock, I., Barnes, P., Ciaccia, A., Cavallesco, G., Chung, K.F., et al. (2004). Mucin expression in peripheral airways of patients with chronic obstructive pulmonary disease. Histopathology 45, 477-484. https://doi.org/10.1111/j.1365-2559.2004.01952.x
  12. Chen, L.F., Mu, Y., and Greene, W.C. (2002). Acetylation of RelA at discrete sites regulates distinct nuclear functions of NF-kappaB. EMBO J. 21, 6539-6548. https://doi.org/10.1093/emboj/cdf660
  13. Chen, Y., Garvin, L.M., Nickola, T.J., Watson, A.M., Colberg-Poley, A.M., and Rose, M.C. (2014). IL-1β induction of MUC5AC gene expression is mediated by CREB and NF-κB and repressed by dexamethasone. Am. J. Physiol. Lung Cell. Mol. Physiol. 306, L797-L807. https://doi.org/10.1152/ajplung.00347.2013
  14. Chen, Y., Watson, A.M., Williamson, C.D., Rahimi, M., Liang, C., ColbergPoley, A.M., and Rose, M.C. (2012). Glucocorticoid receptor and histone deacetylase-2 mediate dexamethasone-induced repression of MUC5AC gene expression. Am. J. Respir. Cell Mol. Biol. 47, 637-644. https://doi.org/10.1165/rcmb.2012-0009OC
  15. Choi, B.S., Kim, Y.J., Yoon, Y.P., Lee, H.J., and Lee, C.J. (2018). Tussilagone suppressed the production and gene expression of MUC5AC mucin via regulating nuclear factor-kappa B signaling pathway in airway epithelial cells. Korean J. Physiol. Pharmacol. 22, 671-677. https://doi.org/10.4196/kjpp.2018.22.6.671
  16. Choi, J.H., Hwang, Y.P., Han, E.H., Kim, H.G., Park, B.H., Lee, H.S., Park, B.K., Lee, Y.C., Chung, Y.C., and Jeong, H.G. (2011). Inhibition of acrolein-stimulated MUC5AC expression by Platycodon grandiflorum root-derived saponin in A549 cells. Food Chem. Toxicol. 49, 2157-2166. https://doi.org/10.1016/j.fct.2011.05.030
  17. Cukic, V., Lovre, V., Dragisic, D., and Ustamujic, A. (2012). Asthma and chronic obstructive pulmonary disease (COPD) - differences and similarities. Mater. Sociomed. 24, 100-105. https://doi.org/10.5455/msm.2012.24.100-105
  18. Curran, D.R. and Cohn, L. (2010). Advances in mucous cell metaplasia: a plug for mucus as a therapeutic focus in chronic airway disease. Am. J. Respir. Cell Mol. Biol. 42, 268-275. https://doi.org/10.1165/rcmb.2009-0151TR
  19. Frischmeyer-Guerrerio, P.A., Guerrerio, A.L., Oswald, G., Chichester, K., Myers, L., Halushka, M.K., Oliva-Hemker, M., Wood, R.A., and Dietz, H.C. (2013). TGFbeta receptor mutations impose a strong predisposition for human allergic disease. Sci. Transl. Med. 5, 195ra194.
  20. Hewson, C.A., Edbrooke, M.R., and Johnston, S.L. (2004). PMA induces the MUC5AC respiratory mucin in human bronchial epithelial cells, via PKC, EGF/TGF-α, Ras/Raf, MEK, ERK and Sp1-dependent mechanisms. J. Mol. Biol. 344, 683-695. https://doi.org/10.1016/j.jmb.2004.09.059
  21. Hill, C.S. (2016). Transcriptional control by the SMADs. Cold Spring Harb. Perspect. Biol. 8, a022079. https://doi.org/10.1101/cshperspect.a022079
  22. Hong, S.T. and Choi, K.W. (2016). Antagonistic roles of Drosophila Tctp and Brahma in chromatin remodelling and stabilizing repeated sequences. Nat. Commun. 7, 12988. https://doi.org/10.1038/ncomms12988
  23. Ito, K., Barnes, P.J., and Adcock, I.M. (2000). Glucocorticoid receptor recruitment of histone deacetylase 2 inhibits interleukin-1beta-induced histone H4 acetylation on lysines 8 and 12. Mol. Cell. Biol. 20, 6891-6903. https://doi.org/10.1128/MCB.20.18.6891-6903.2000
  24. Ito, K., Ito, M., Elliott, W.M., Cosio, B., Caramori, G., Kon, O.M., Barczyk, A., Hayashi, S., Adcock, I.M., Hogg, J.C., et al. (2005). Decreased histone deacetylase activity in chronic obstructive pulmonary disease. N. Engl. J. Med. 352, 1967-1976. https://doi.org/10.1056/NEJMoa041892
  25. Ito, K., Lim, S., Caramori, G., Chung, K.F., Barnes, P.J., and Adcock, I.M. (2001). Cigarette smoking reduces histone deacetylase 2 expression, enhances cytokine expression, and inhibits glucocorticoid actions in alveolar macrophages. FASEB J. 15, 1110-1112. https://doi.org/10.1096/fsb2fj000432fje
  26. Jonckheere, N., Van Der Sluis, M., Velghe, A., Buisine, M.P., Sutmuller, M., Ducourouble, M.P., Pigny, P., Buller, H.A., Aubert, J.P., Einerhand, A.W., et al. (2004). Transcriptional activation of the murine Muc5ac mucin gene in epithelial cancer cells by TGF-beta/Smad4 signalling pathway is potentiated by Sp1. Biochem. J. 377, 797-808. https://doi.org/10.1042/BJ20030948
  27. Jono, H., Xu, H., Kai, H., Lim, D.J., Kim, Y.S., Feng, X.H., and Li, J.D. (2003). Transforming growth factor-beta-Smad signaling pathway negatively regulates nontypeable Haemophilus influenzae-induced MUC5AC mucin transcription via mitogen-activated protein kinase (MAPK) phosphatase1-dependent inhibition of p38 MAPK. J. Biol. Chem. 278, 27811-27819. https://doi.org/10.1074/jbc.M301773200
  28. Kanai, K., Koarai, A., Shishikura, Y., Sugiura, H., Ichikawa, T., Kikuchi, T., Akamatsu, K., Hirano, T., Nakanishi, M., Matsunaga, K., et al. (2015). Cigarette smoke augments MUC5AC production via the TLR3-EGFR pathway in airway epithelial cells. Respir Investig. 53, 137-148. https://doi.org/10.1016/j.resinv.2015.01.007
  29. Kesimer, M., Ford, A.A., Ceppe, A., Radicioni, G., Cao, R., Davis, C.W., Doerschuk, C.M., Alexis, N.E., Anderson, W.H., Henderson, A.G., et al. (2017). Airway mucin concentration as a marker of chronic bronchitis. N. Engl. J. Med. 377, 911-922. https://doi.org/10.1056/NEJMoa1701632
  30. Kim, D.Y., Kim, W.J., Kim, J.H., Hong, S.H., and Choi, S.S. (2019). Identification of putative regulatory alterations leading to changes in gene expression in chronic obstructive pulmonary disease. Mol. Cells 42, 333-344. https://doi.org/10.14348/molcells.2019.2442
  31. Krishn, S.R., Ganguly, K., Kaur, S., and Batra, S.K. (2018). Ramifications of secreted mucin MUC5AC in malignant journey: a holistic view. Carcinogenesis 39, 633-651. https://doi.org/10.1093/carcin/bgy019
  32. Kuo, M.H. and Allis, C.D. (1998). Roles of histone acetyltransferases and deacetylases in gene regulation. Bioessays 20, 615-626. https://doi.org/10.1002/(SICI)1521-1878(199808)20:8<615::AID-BIES4>3.0.CO;2-H
  33. Lagna, G., Hata, A., Hemmati-Brivanlou, A., and Massague, J. (1996). Partnership between DPC4 and SMAD proteins in TGF-beta signalling pathways. Nature 383, 832-836. https://doi.org/10.1038/383832a0
  34. Lee, J.W., Ryu, H.W., Lee, S.U., Kim, M.G., Kwon, O.K., Kim, M.O., Oh, T.K., Lee, J.K., Kim, T.Y., Lee, S.W., et al. (2019). Pistacia weinmannifolia ameliorates cigarette smoke and lipopolysaccharideinduced pulmonary inflammation by inhibiting interleukin8 production and NFkappaB activation. Int. J. Mol. Med. 44, 949-959.
  35. Lee, S.U., Ahn, K.S., Sung, M.H., Park, J.W., Ryu, H.W., Lee, H.J., Hong, S.T., and Oh, S.R. (2014). Indacaterol inhibits tumor cell invasiveness and MMP9 expression by suppressing IKK/NF-kappaB activation. Mol. Cells 37, 585-591. https://doi.org/10.14348/molcells.2014.0076
  36. Lee, S.U., Lee, S., Ro, H., Choi, J.H., Ryu, H.W., Kim, M.O., Yuk, H.J., Lee, J., Hong, S.T., and Oh, S.R. (2018). Piscroside C inhibits TNF-alpha/NF-kappaB pathway by the suppression of PKCdelta activity for TNF-RSC formation in human airway epithelial cells. Phytomedicine 40, 148-157. https://doi.org/10.1016/j.phymed.2018.01.012
  37. Lee, S.U., Sung, M.H., Ryu, H.W., Lee, J., Kim, H.S., In, H.J., Ahn, K.S., Lee, H.J., Lee, H.K., Shin, D.H., et al. (2016). Verproside inhibits TNF-alpha-induced MUC5AC expression through suppression of the TNF-alpha/NF-kappaB pathway in human airway epithelial cells. Cytokine 77, 168-175. https://doi.org/10.1016/j.cyto.2015.08.262
  38. Letterio, J.J. and Roberts, A.B. (1998). Regulation of immune responses by TGF-beta. Annu. Rev. Immunol. 16, 137-161. https://doi.org/10.1146/annurev.immunol.16.1.137
  39. Ling, E. and Robinson, D.S. (2002). Transforming growth factor-beta1: its anti-inflammatory and pro-fibrotic effects. Clin. Exp. Allergy 32, 175-178. https://doi.org/10.1046/j.1365-2222.2002.01287.x
  40. Livak, K.J. and Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402-408. https://doi.org/10.1006/meth.2001.1262
  41. Luo, K. (2017). Signaling cross talk between TGF-beta/Smad and other signaling pathways. Cold Spring Harb. Perspect. Biol. 9, a022137. https://doi.org/10.1101/cshperspect.a022137
  42. Mata, M., Sarria, B., Buenestado, A., Cortijo, J., Cerda, M., and Morcillo, E.J. (2005). Phosphodiesterase 4 inhibition decreases MUC5AC expression induced by epidermal growth factor in human airway epithelial cells. Thorax 60, 144-152. https://doi.org/10.1136/thx.2004.025692
  43. Moodie, F.M., Marwick, J.A., Anderson, C.S., Szulakowski, P., Biswas, S.K., Bauter, M.R., Kilty, I., and Rahman, I. (2004). Oxidative stress and cigarette smoke alter chromatin remodeling but differentially regulate NF-kappaB activation and proinflammatory cytokine release in alveolar epithelial cells. FASEB J. 18, 1897-1899. https://doi.org/10.1096/fj.04-1506fje
  44. Mortaz, E., Masjedi, M.R., Barnes, P.J., and Adcock, I.M. (2011). Epigenetics and chromatin remodeling play a role in lung disease. Tanaffos 10, 7-16.
  45. Nakao, A., Imamura, T., Souchelnytskyi, S., Kawabata, M., Ishisaki, A., Oeda, E., Tamaki, K., Hanai, J., Heldin, C.H., Miyazono, K., et al. (1997). TGF-beta receptor-mediated signalling through Smad2, Smad3 and Smad4. EMBO J. 16, 5353-5362. https://doi.org/10.1093/emboj/16.17.5353
  46. Nomura, M. and Li, E. (1998). Smad2 role in mesoderm formation, leftright patterning and craniofacial development. Nature 393, 786-790. https://doi.org/10.1038/31693
  47. Ojiaku, C.A., Cao, G., Zhu, W., Yoo, E.J., Shumyatcher, M., Himes, B.E., An, S.S., and Panettieri, R.A., Jr. (2018). TGF-beta1 evokes human airway smooth muscle cell shortening and hyperresponsiveness via Smad3. Am. J. Respir. Cell Mol. Biol. 58, 575-584. https://doi.org/10.1165/rcmb.2017-0247OC
  48. Park, S.H., Gong, J.H., Choi, Y.J., Kang, M.K., Kim, Y.H., and Kang, Y.H. (2015). Kaempferol inhibits endoplasmic reticulum stress-associated mucus hypersecretion in airway epithelial cells and ovalbumin-sensitized mice. PLoS One 10, e0143526. https://doi.org/10.1371/journal.pone.0143526
  49. Perrais, M., Pigny, P., Copin, M.C., Aubert, J.P., and Van Seuningen, I. (2002). Induction of MUC2 and MUC5AC mucins by factors of the epidermal growth factor (EGF) family is mediated by EGF receptor/Ras/Raf/extracellular signal-regulated kinase cascade and Sp1. J. Biol. Chem. 277, 32258-32267. https://doi.org/10.1074/jbc.M204862200
  50. Rose, M.C. and Voynow, J.A. (2006). Respiratory tract mucin genes and mucin glycoproteins in health and disease. Physiol. Rev. 86, 245-278. https://doi.org/10.1152/physrev.00010.2005
  51. Saito, A., Horie, M., and Nagase, T. (2018). TGF-beta signaling in lung health and disease. Int. J. Mol. Sci. 19, 2460. https://doi.org/10.3390/ijms19082460
  52. Samsuzzaman, M., Uddin, M.S., Shah, M., and Mathew, B. (2019). Natural inhibitors on airway mucin: molecular insight into the therapeutic potential targeting MUC5AC expression and production. Life Sci. 231, 1-14.
  53. Sato, R., Semba, T., Kohrogi, H., Saya, H., and Arima, Y. (2016). Abstract 4192: The association between gastric Mucin 5AC (MUC5AC) expressions, transforming growth factor-β (TGF-β) signal, and histopathological phenotypes of lung cancer in xenograft models. Cancer Res. 76, 4192. https://doi.org/10.1158/0008-5472.CAN-15-3339
  54. Shen, Y., Huang, S., Kang, J., Lin, J., Lai, K., Sun, Y., Xiao, W., Yang, L., Yao, W., Cai, S., et al. (2018). Management of airway mucus hypersecretion in chronic airway inflammatory disease: Chinese expert consensus (English edition). Int. J. Chron. Obstruct. Pulmon. Dis. 13, 399-407. https://doi.org/10.2147/COPD.S144312
  55. Sikder, M.A., Lee, H.J., Mia, M.Z., Park, S.H., Ryu, J., Kim, J.H., Min, S.Y., Hong, J.H., Seok, J.H., and Lee, C.J. (2014). Inhibition of TNF-α-induced MUC5AC mucin gene expression and production by wogonin through the inactivation of NF-κB signaling in airway epithelial cells. Phytother. Res. 28, 62-68. https://doi.org/10.1002/ptr.4954
  56. Takimoto, T., Wakabayashi, Y., Sekiya, T., Inoue, N., Morita, R., Ichiyama, K., Takahashi, R., Asakawa, M., Muto, G., Mori, T., et al. (2010). Smad2 and Smad3 are redundantly essential for the TGF-beta-mediated regulation of regulatory T plasticity and Th1 development. J. Immunol. 185, 842-855. https://doi.org/10.4049/jimmunol.0904100
  57. Thomson, N.C., Chaudhuri, R., and Livingston, E. (2004). Asthma and cigarette smoking. Eur. Respir. J. 24, 822-833. https://doi.org/10.1183/09031936.04.00039004
  58. Tong, J. and Gu, Q. (2020). Expression and clinical significance of mucin gene in chronic rhinosinusitis. Curr. Allergy Asthma Rep. 20, 63. https://doi.org/10.1007/s11882-020-00958-w
  59. Vignola, A.M., Chanez, P., Chiappara, G., Merendino, A., Pace, E., Rizzo, A., la Rocca, A.M., Bellia, V., Bonsignore, G., and Bousquet, J. (1997). Transforming growth factor-beta expression in mucosal biopsies in asthma and chronic bronchitis. Am. J. Respir. Crit. Care Med. 156, 591-599. https://doi.org/10.1164/ajrccm.156.2.9609066
  60. Voynow, J.A. and Rubin, B.K. (2009). Mucins, mucus, and sputum. Chest 135, 505-512. https://doi.org/10.1378/chest.08-0412
  61. Wrana, J.L., Attisano, L., Wieser, R., Ventura, F., and Massague, J. (1994). Mechanism of activation of the TGF-β receptor. Nature 370, 341-347. https://doi.org/10.1038/370341a0
  62. Wrzesinski, S.H., Wan, Y.Y., and Flavell, R.A. (2007). Transforming growth factor-beta and the immune response: implications for anticancer therapy. Clin. Cancer Res. 13, 5262-5270. https://doi.org/10.1158/1078-0432.CCR-07-1157
  63. Yang, S.R., Chida, A.S., Bauter, M.R., Shafiq, N., Seweryniak, K., Maggirwar, S.B., Kilty, I., and Rahman, I. (2006). Cigarette smoke induces proinflammatory cytokine release by activation of NF-kappaB and posttranslational modifications of histone deacetylase in macrophages. Am. J. Physiol. Lung Cell. Mol. Physiol. 291, L46-L57. https://doi.org/10.1152/ajplung.00241.2005
  64. Zen, Y., Harada, K., Sasaki, M., Tsuneyama, K., Katayanagi, K., Yamamoto, Y., and Nakanuma, Y. (2002). Lipopolysaccharide induces overexpression of MUC2 and MUC5AC in cultured biliary epithelial cells: possible key phenomenon of hepatolithiasis. Am. J. Pathol. 161, 1475-1484. https://doi.org/10.1016/S0002-9440(10)64423-9
  65. Zwinderman, M.R.H., de Weerd, S., and Dekker, F.J. (2019). Targeting HDAC complexes in asthma and COPD. Epigenomes 3, 19. https://doi.org/10.3390/epigenomes3030019