• 제목/요약/키워드: host cells

검색결과 1,067건 처리시간 0.029초

Fuel Cell as an Alternative Distributed Generation Source under Deregulated Power Systems (규제가 없는 전력계통에서 대체분산전원으로서의 연료전지)

  • Lee, Kwang-Y.;Kim, Se-Ho;Kim, Eel-Hwan;Kim, Ho-Chan
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • 제55권12호
    • /
    • pp.561-569
    • /
    • 2006
  • Because of the trend of deregulation, power industry is going through an unprecedented transformation in North America and Europe, and there are a host of acquisitions and mergers by the private sector to position themselves to take advantage of new business opportunities. Deregulation has accelerated the development of smaller generators and fuel cells will gradually become more attractive to mainstream electricity users as they improve in capability and decrease in cost. Fuel Cell technology is surveyed and the potential of using fuel cell as a distributed generation source is presented. This paper recommends the fuel cell power plants as alternative energy sources for distributed generation in Jeju Island, Korea. This will help in increasing fuel efficiency, at least double the current thermal plants', increasing the reliability of power supply, reducing the dependency on the HVDC link, providing quality power to the growing infrastructure, and maintaining clean air in meeting the free-trade international island.

Effect of Youn-Gyo-Pae-Doc-San on the Release of Thymus and Activation-Regulated Chemokine(TARC) in Human Bronchial Epithelial Cell (連翹敗毒散이 사람 기관지 상피세포의 TARC 분비에 미치는 효과)

  • Lee, Kyung-yeob;Kim, Hee-taek;Kim, E-hwa;Nam, Chang-gyu;Ryu, Ju-hyun
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • 제16권3호
    • /
    • pp.82-95
    • /
    • 2003
  • Chemokines are important for the recruitment of leukocytes to sites of infection, which is essential in host defense. The thymus and activation-regulated chemokine (TARC) is a CC chemokine which potentially plays a role via a paracrine mechanism in the development of allergic respiratory diseases. Objectives : The objective of this study is to investigate the effect of Youn-Gyo-Pae-Doc-San on the secretion of TARC of human bronchial epithelial cell Methods : Enzyme-linked immunosorbent assay (ELISA) was performed to detect the secretion of TARC. The cytotoxicity was measured by MTT assay. Results : Youn-Gyo-Pae-Doc-San significantly inhibited the secretion of TARC with a dose -dependant manner. The effective dosage did not have the cytotoxicity on human bronchial epithelial cell. Conclusions : Results of our study show that Youn-Gyo-Pae-Doc-San would play an important role in modulation of TARC in human bronchial epithelial cells.

  • PDF

Overexpression and Characterization of Eukaryotic Peptide Hormone Precursors in E. Coli. (대장균에서 진핵세포 펩타이드 호르몬 전구물질의 대량생산과 특성규명)

  • 홍승환
    • The Korean Journal of Zoology
    • /
    • 제33권3호
    • /
    • pp.303-309
    • /
    • 1990
  • In order to have a handle on the availability of eukarvotic peptide hormone precursors, a cDNA encoding angler fish prepro-SRIF I was manipulated so that it can be produced in large quantity from heterologous E. coli cells. Using T7 overexpression system, fusion constructs between the T7 phage coat protein Sl0 and the prepro-SRIF were made and modified as desired. From the host E. coli strain, BL21 DE3, harboring these plasmid constructs, three different SRIF related polypeptides were expressed in large amount and characterized. The results confirm the exact construction and authenticity of the overexpressed proteins from E. coli cells. The importance of this heterologous overexpression in hard to get peptide hormone precursors as well as the suitability of the target peptide hormone SRIF for this approach are discussed.

  • PDF

Animal lectins: potential receptors for ginseng polysaccharides

  • Loh, So Hee;Park, Jin-Yeon;Cho, Eun Hee;Nah, Seung-Yeol;Kang, Young-Sun
    • Journal of Ginseng Research
    • /
    • 제41권1호
    • /
    • pp.1-9
    • /
    • 2017
  • Panax ginseng Meyer, belonging to the genus Panax of the family Araliaceae, is known for its human immune system-related effects, such as immune-boosting effects. Ginseng polysaccharides (GPs) are the responsible ingredient of ginseng in immunomodulation, and are classified as acidic and neutral GPs. Although GPs participate in various immune reactions including the stimulation of immune cells and production of cytokines, the precise function of GPs together with its potential receptor(s) and their signal transduction pathways have remained largely unknown. Animal lectins are carbohydrate-binding proteins that are highly specific for sugar moieties. Among many different biological functions in vivo, animal lectins especially play important roles in the immune system by recognizing carbohydrates that are found exclusively on pathogens or that are inaccessible on host cells. This review summarizes the immunological activities of GPs and the diverse roles of animal lectins in the immune system, suggesting the possibility of animal lectins as the potential receptor candidates of GPs and giving insights into the development of GPs as therapeutic biomaterials for many immunological diseases.

Garlic Mite-borne Virus Isolated from Cultivated Garlic in Korea (한국산 마늘에서 분리된 응애전파성 바이러스)

  • 구봉진;장무웅;최양도
    • Korean Journal Plant Pathology
    • /
    • 제14권2호
    • /
    • pp.136-144
    • /
    • 1998
  • Many cloves of native cultivated garlics in Korea were found to be infested by mites when observed with stereo-microscope. The mite was identified by light and scanning electron microscopic observation as Aceria tulipae. Surveying viruses from the vegetatively propagated garlic, highly flexuous, filamentous particles (700∼800 nm) were detected in Aceria tulipae, local lesions of Chenopodium murale after sap transmissions, mosaic garlic leaves inoculated with mite-borne virus by transmission of Aceria tulipae and naturally infected garlic leaves. The mite-borne virus isolated did not react with antisera of aphid-borne potyviruses (LYSV-G, LYSV-L, WoYSV) or carlavirus (GLV), but reacted with antisera of garlic mite-borne viruses (GV-C, GMbMV). In ultratin sections of mite-borne virus infected garlic tissues, aggregates of virus particles and membrane proliferations were found in the parenchyma cells, but cytoplasmic cylindrical inclusions were not observed. Heavily mite-infested plants showed streaking and malformation due to mite feeding. The mite-borne virus was identified as garlic mite-borne mosaic virus (GMbMV), the mite-borne genus Rymovirus of the Potyviridae by mite transmission, morphology of virus particles, serological relationships, host range, distribution pattern of virus particles and inclusion bodies in the infected cells. The results demonstrate that mite-borne virus is one of the major viruses infecting native cultivated garlic plants showing mosaic or streak symptoms in Korea.

  • PDF

Inhibitory Activity of Sedum middendorffianum-Derived 4-Hydroxybenzoic Acid and Vanillic Acid on the Type III Secretion System of Pseudomonas syringae pv. tomato DC3000

  • Kang, Ji Eun;Jeon, Byeong Jun;Park, Min Young;Kim, Beom Seok
    • The Plant Pathology Journal
    • /
    • 제36권6호
    • /
    • pp.608-617
    • /
    • 2020
  • The type III secretion system (T3SS) is a key virulence determinant in the infection process of Pseudomonas syringae pv. tomato DC3000 (Pst DC3000). Pathogen constructs a type III apparatus to translocate effector proteins into host cells, which have various roles in pathogenesis. 4-Hydroxybenozic acid and vanillic acid were identified from root extract of Sedum middendorffianum to have inhibitory effect on promoter activity of hrpA gene encoding the structural protein of the T3SS apparatus. The phenolic acids at 2.5 mM significantly suppressed the expression of hopP1, hrpA, and hrpL in the hrp/hrc gene cluster without growth retardation of Pst DC3000. Auto-agglutination of Pst DC3000 cells, which is induced by T3SS, was impaired by the treatment of 4-hydroxybenzoic acid and vanillic acid. Additionally, 2.5 mM of each two phenolic acids attenuated disease symptoms including chlorosis surrounding bacterial specks on tomato leaves. Our results suggest that 4-hydroxybenzoic acid and vanillic acid are potential anti-virulence agents suppressing T3SS of Pst DC3000 for the control of bacterial diseases.

Effect of Ephedrae Herbal Acupuncture Solution(EHS) on the Release of Thymus and Activation-Regulated Chemokine (TARC) in Human Bronchial Epithelial Cell (마황(麻黃) 약침액(藥鍼液)이 사람 기관지 상피세포의 TARC 분비에 미치는 효과)

  • Chou, Yu-Shih;Seo, Jung-Chul;Lim, Seong-chul;Jung, Tae-Young;Han, Sang-Won
    • Korean Journal of Acupuncture
    • /
    • 제22권1호
    • /
    • pp.23-32
    • /
    • 2005
  • Chemokines are important for the recruitment of leukocytes, which is essential in host defense to the sites of infection. The thymus and activation-regulated chemokine (TARC) is a CC chemokine which potentially plays a role via a paracrine mechanism in the development of allergic respiratory diseases. Objectives : The objective of this study is to investigate the effect of Ephedrae Herba Herbal Acupuncture Solution(EHS) on the secretion of TARC of human bronchial epithelial cell. Methods : Enzyme-linked immunosorbent assay (ELISA) was performed to detect the secretion of TARC. The cytotoxicity was measured by MTT assay. Results : EHS significantly inhibited the secretion of TARC with a dose-dependant manner. The effective dosage did not have the cytotoxicity on human bronchial epithelial cell. Conclusion : Results of our study imply that EHS would play an important role in modulation of TARC in human bronchial epithelial cells by MTT assay.

  • PDF

MiT Family Transcriptional Factors in Immune Cell Functions

  • Kim, Seongryong;Song, Hyun-Sup;Yu, Jihyun;Kim, You-Me
    • Molecules and Cells
    • /
    • 제44권5호
    • /
    • pp.342-355
    • /
    • 2021
  • The microphthalmia-associated transcription factor family (MiT family) proteins are evolutionarily conserved transcription factors that perform many essential biological functions. In mammals, the MiT family consists of MITF (microphthalmia-associated transcription factor or melanocyte-inducing transcription factor), TFEB (transcription factor EB), TFE3 (transcription factor E3), and TFEC (transcription factor EC). These transcriptional factors belong to the basic helix-loop-helix-leucine zipper (bHLH-LZ) transcription factor family and bind the E-box DNA motifs in the promoter regions of target genes to enhance transcription. The best studied functions of MiT proteins include lysosome biogenesis and autophagy induction. In addition, they modulate cellular metabolism, mitochondria dynamics, and various stress responses. The control of nuclear localization via phosphorylation and dephosphorylation serves as the primary regulatory mechanism for MiT family proteins, and several kinases and phosphatases have been identified to directly determine the transcriptional activities of MiT proteins. In different immune cell types, each MiT family member is shown to play distinct or redundant roles and we expect that there is far more to learn about their functions and regulatory mechanisms in host defense and inflammatory responses.

Functional Dissection of Glutamatergic and GABAergic Neurons in the Bed Nucleus of the Stria Terminalis

  • Kim, Seong-Rae;Kim, Sung-Yon
    • Molecules and Cells
    • /
    • 제44권2호
    • /
    • pp.63-67
    • /
    • 2021
  • The bed nucleus of the stria terminalis (BNST)-a key part of the extended amygdala-has been implicated in the regulation of diverse behavioral states, ranging from anxiety and reward processing to feeding behavior. Among the host of distinct types of neurons within the BNST, recent investigations employing cell type- and projection-specific circuit dissection techniques (such as optogenetics, chemogenetics, deep-brain calcium imaging, and the genetic and viral methods for targeting specific types of cells) have highlighted the key roles of glutamatergic and GABAergic neurons and their axonal projections. As anticipated from their primary roles in excitatory and inhibitory neurotransmission, these studies established that the glutamatergic and GABAergic subpopulations of the BNST oppositely regulate diverse behavioral states. At the same time, these studies have also revealed unexpected functional specificity and heterogeneity within each subpopulation. In this Minireview, we introduce the body of studies that investigated the function of glutamatergic and GABAergic BNST neurons and their circuits. We also discuss unresolved questions and future directions for a more complete understanding of the cellular diversity and functional heterogeneity within the BNST.

Protective Effects of a Novel Lactobacillus brevis Strain with Probiotic Characteristics against Staphylococcus aureus Lipoteichoic Acid-Induced Intestinal Inflammatory Response

  • Kim, Won-Ju;Hyun, Jun-Hyun;Lee, Na-Kyoung;Paik, Hyun-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권2호
    • /
    • pp.205-211
    • /
    • 2022
  • Probiotics can effectively modulate host immune responses and prevent gastrointestinal diseases. The objective of this study was to investigate the probiotic characteristics of Lactobacillus brevis KU15152 isolated from kimchi and its protective potential against intestinal inflammation induced by Staphylococcus aureus lipoteichoic acid (aLTA). L. brevis KU15152 exhibited a high survival rate in artificial gastric and bile environments. Additionally, the adhesion capability of the strain to HT-29 cells was higher than that of L. rhamnosus GG. L. brevis KU15152 did not produce harmful enzymes, such as β-glucuronidase, indicating that it could be used as a potential probiotic. The anti-inflammatory potential of L. brevis KU15152 was determined in HT-29 cells. Treatment with L. brevis KU15152 suppressed the production of interleukin-8 without inducing significant cytotoxicity. The downregulatory effects of L. brevis KU15152 were involved in the suppression of nuclear factor-kappa B activation mediated by the extracellular signal-regulated kinase and Akt signaling pathways. Collectively, these data suggest that L. brevis KU15152 can be used in developing therapeutic and prophylactic products to manage and treat aLTA-induced intestinal damage.