• 제목/요약/키워드: host cells

검색결과 1,063건 처리시간 0.031초

Dimethylsulfoxide로 분화시킨 HL-60 세포의 yoxoplasma 파괴 효과 (Toxoplasmacidal Effect of HL-60 Cells Differentiated by Dimethylsulfoxide)

  • 최원영;남호우;유재을
    • Parasites, Hosts and Diseases
    • /
    • 제26권4호
    • /
    • pp.229-238
    • /
    • 1988
  • HL-60세포에서 Toxoplasma gondii의 in vitro배양과 HL-60세포를 DMSO로 처리하여 과립세포로 분화시킨 세포에서 Toxoplasma에 대한 세포매개성 면역 기능을 검토하였다. 먼저, HL-60 세포를 여러 농도의 DMSO로 처리하였는데, 1.3%(V/V)로 3일간 처리하였을 때, HL-60 세포 의 적정 분화가 이루어졌다. 분화의 정도는 형태적, 생리적, 및 기능적 관점에서 검사되었는데, DMSO를 처리한 경우, 3H-thymidine의 흡입이 감소하는 것으로 보아 DNA 합성이 억제됨을 알 수 있었으며, 기능적으로는 주화성 물질인 FMLP에 대해 이동하는 성질을 보였으며, 형태적으로는 핵1세포질의 비가 큰 promyelocyte에서 작은 비를 갖는 과립 세포로 변화하여 분화를 입증하였다. 이후, HL-60 세포나 DMSO로 분화를 유도한 HL-60 세포와 Toxoplasma를 같이 배양하면서 이들의 관계를 관찰하였다. Lysosome에 선택적으로 흡입되는 형광 물질(acridine orange)로 전처리한 표본은 형광현미경하에 서 관찰하였으며, 다른 표본은 Giemsa로 염색하여 광학 현미경하에서 관찰하여 비교하였다. HL-60 세포에서는 72시간의 배양으로 Toxoplasma가 세포질내에서 증식하여 rosette를 형성하였으며, DMSO로 분화시킨 HL-60 세 포에서는 배양 초기 1시간째에 phagocytosis가 일어났으며 이후 세포내 소화가 이루어져 72시간째에는 lysosome이 원상태로 되돌아오는 것이 관찰되었다. 이상의 결과들로 볼 때, Toxoplnsma의 숙주 세포내에서의 기생 혹은 면역 세포에 의한 감수성에 phagosome 과 Iysosome의 융합이 결정적인 인자임을 알 수 있었으며, 아울러 HL-60 세포에서의 Toxoplasma의 증식 가능성과 DMSO로 분화시킨 HL-60 세포의 Toxoplasma 파괴 효과가 원충 기생충과 숙주의 상호 관계를 규명하는 좋은 모델임을 제시하였다.

  • PDF

First report of interspecific facultative social parasitism by Polistes sp. on Polistes djakonovi Kostylev (Hymenoptera: Vespidae) in South Korea

  • Choi, Moon Bo;Kwon, Ohseok
    • Journal of Ecology and Environment
    • /
    • 제38권4호
    • /
    • pp.537-540
    • /
    • 2015
  • Social parasitism is occasionally found in some Polistes and Vespa species, such as Vespa dybowskii. We report a discovey of interspecific facultative social parasitism by Polistes sp. (possibly P. mandarinus) on Polistes djakonovi Kostylev in two rural areas of South Korea. P. djakonovi is very similar to Polistes sp. in its body color patterns except that the mark on the clypeus is different. In nest 1 (65 cells), we found 5 females of P. djakonovi and 4 females of Polistes sp. on 30 July 2014, whereas nest 2 (102 cells) contained 12 females and 16 males of P. djakonovi, and 3 females of Polistes sp. on 28 August 2013. Although we found the two nests in July and August, P. djakonovi seems to have been exploited by Polistes sp. at the end of the preemergence period (early to mid-June). The two nests found in this study had mainly white cocoon caps of P. djakonovi with several yellow ones of Polistes sp. In most cases of social parasitism, intruders have a larger size of the body or some body parts than the host in order to usurp the host; in contrast, this study showed that the hosts had lager bodies than the intruders.

조류의 장내 면역체계와 콕시듐(Eimeria)기생충들에 대한 국소면역 반응 (Avian Gut Immune System and Local Responses to Eimerial Parasites)

  • Lillehoj, H.S.
    • 한국가금학회지
    • /
    • 제26권2호
    • /
    • pp.131-144
    • /
    • 1999
  • Coccidiosis, an intestinal infection caused by intracellular protozoan parasites belonging to several different species of Eimeria seriously impairs the growth and feed utilization of livestock and poultry. Due to complex life cycle of organism and intricate host immune responses to Elmeria, coccidia vaccine development has been difficult. Understanding of basic imunobiology of pertinent host-parasite interactions is necessary for the development of novel control strategy. Although chickens infected with Eimeria spp. produce parasite-specific antibodies in both the circulation and mucosal secretions, antibody mediated responses play a minor role in protection gainst coccidiosis. Rather, increasing evidence show that cell-mediated immunity plays a major role in resistance to coccidiosis. T-lymphocytes appear to respond to coccidiosis both through cytokine production and a direct cytotoxic attack on infected cells. The exact mechanisms by which T-cells eliminate the parasites, however, remain to be investigated. Since it is crucial to understand the intestinal immune system in order to develop an immunological control strategy against any intestinal immune system in order to develop an immunological control strategy against any intestinal diseases, this presentation will summarize our current understanding of the avian intestinal immune system and mucosal immune responses to Eimeria, to provide a conceptual overview of the complex molecular and cellular events involved in intestinal immune responses to enteric pathogens.

  • PDF

Inhibition of Helicobacter pylori Adhesion by Acidic Polysaccharide Isolated from Artemisia capillaris

  • Woo, Jeung-S.;Ha, Byung-H.;Kim, Tae-G.;Lim, Yoon-Gho;Kim, Kyung-H.
    • Journal of Microbiology and Biotechnology
    • /
    • 제13권6호
    • /
    • pp.853-858
    • /
    • 2003
  • Helicobacter pylori specifically adhere to host cells through a number of putative receptors and ligands, mainly based on carbohydrate-protein interactions. Polysaccharide fractions isolated from the leaves of Artemisia capillaris showed different inhibitory activities against H. pylori adhesion by using hemagglutination assay. Among these fractions, an acidic polysaccharide fraction FlA showed highly effective inhibitory activity, and its minimum inhibition concentration was 0.63 mg/ml. The inhibition results by the hemagglutination assay were consistent with those obtained by the enzymelinked glycosorbent assay, which was developed by the conjugation of horseradish peroxidase with fetuin, a sialic acid-containing glycoprotein which was specific to H. pylori adhesion. FlA contained the highest carbohydrate content among polysaccharide fractions, and no protein was detectable when further purified by gel filtration FPLC. Sugar composition analysis using GC revealed the highest amount of galacturonic acid among sugars, which suggests that FlA contains essentially acidic polysaccharides. Our data suggest that acidic polysaccharides may play an important role in the inhibition of H. pylori adhesion to host cells.

Mitochondrial Porin Isoform AtVDAC1 Regulates the Competence of Arabidopsis thaliana to Agrobacterium-Mediated Genetic Transformation

  • Kwon, Tackmin
    • Molecules and Cells
    • /
    • 제39권9호
    • /
    • pp.705-713
    • /
    • 2016
  • The efficiency of Agrobacterium-mediated transformation in plants depends on the virulence of Agrobacterium strains, the plant tissue culture conditions, and the susceptibility of host plants. Understanding the molecular interactions between Agrobacterium and host plant cells is crucial when manipulating the susceptibility of recalcitrant crop plants and protecting orchard trees from crown gall disease. It was discovered that Arabidopsis voltage-dependent anion channel 1 (atvdac1) mutant has drastic effects on Agrobacterium-mediated tumorigenesis and growth developmental phenotypes, and that these effects are dependent on a Ws-0 genetic background. Genetic complementation of Arabidopsis vdac1 mutants and yeast porin1-deficient strain with members of the AtVDAC gene family revealed that AtVDAC1 is required for Agrobacterium-mediated transformation, and there is weak functional redundancy between AtVDAC1 and AtVDAC3, which is independent of porin activity. Furthermore, atvdac1 mutants were deficient in transient and stable transformation by Agrobacterium, suggesting that AtVDAC1 is involved in the early stages of Agrobacterium infection prior to transferred-DNA (T-DNA) integration. Transgenic plants overexpressing AtVDAC1 not only complemented the phenotypes of the atvdac1 mutant, but also showed high efficiency of transient T-DNA gene expression; however, the efficiency of stable transformation was not affected. Moreover, the effect of phytohormone treatment on competence to Agrobacterium was compromised in atvdac1 mutants. These data indicate that AtVDAC1 regulates the competence of Arabidopsis to Agrobacterium infection.

Cloning and Characterization of the Tetracycline Resistant Gene, tetB, from Vibrio parahaemolyticus

  • Kang, Min-Seung;Park, Kun-Ba-Wui;Hwang, Hye-Jin;Bae, Hyang-Nam;Lim, Keun-Sik;Eom, Sung-Hwan;Kim, Young-Mog
    • Fisheries and Aquatic Sciences
    • /
    • 제12권1호
    • /
    • pp.24-28
    • /
    • 2009
  • A tetracycline resistant Vibrio parahaemolyticus, capable of growing on TCBS medium containing tetracycline, was isolated from cultivated fishes. A gene responsible for the tetracycline resistance was cloned from chromosomal DNA of the V. parahaemolyticus strain using Escherichia coli KAM3, which lacks major multi-drug efflux pumps (${\Delta}acrB$) as host cells. The nucleotide sequence and homology analysis revealed an open reading frame (ORF) for tetracycline resistance protein (TetB). In order to characterize the antibiotic resistance of TetB originated from the V. parahaemolyticus strain, the gene was sub cloned into plasmid pSTV28. The resulting plasmid was designated as pSTVTetB and transformated into E. coli KAM3. E. coli KAM3 cells harboring the recombinant plasmid pSTVTetB are able to grow on plates containing tetracycline and oxytetracycline but not doxycycline, indicating that the tetB gene confers the tetracycline- and oxytetracycline-resistance to the host cell.

누에 및 Autographa californica 핵다각체병 바이러스에 대한 유전자 재조명 (Genomic Recombination of Bombyx mori and Autographa californica Nuclear Polyhedrosis Viruses)

  • 우수동;박범석;박지현;정인식;양재명;강석권
    • 한국응용곤충학회지
    • /
    • 제32권4호
    • /
    • pp.407-413
    • /
    • 1993
  • 숙주범위가 서로 다른 Autographa californica NPV(AcNPV)와 Bombyx mori NPV(BmNPV)를 Spodoptera frugiperda(Sf9) 또는 Bombyx mori(BmN-4)의 세포에 동시감염(coinfection)시킨 후, 숙주범위가 확장된 재조합 바이러스를 Sf9세포에서 10종 BmN-4세포에서 2종씩 플라크 순화하여 선발하였다. 각 재조합 바이러스 DNA의 제한효소 분석결과는 한번 이상의 재조합이 일어났음을 보여주었다. 재조합 바이러스 RecB-8의 전자현미경 관찰결과는 다각체의 모양이 모바이러스인 AcNPV나 BmNPV와는 전혀 다른 정사면체 모양이었으며 또한, 모바이러스와는 달리 virion이 다각체에 거의 매립되어 있지 않은 특징을 보였다.

  • PDF

Small Molecule Drug Candidates for Managing the Clinical Symptoms of COVID-19: a Narrative Review

  • Yun, Chawon;Lee, Hyun Jae;Lee, Choong Jae
    • Biomolecules & Therapeutics
    • /
    • 제29권6호
    • /
    • pp.571-581
    • /
    • 2021
  • Towards the end of 2019, an atypical acute respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was identified in Wuhan, China and subsequently named Coronavirus disease 2019 (COVID-19). The rapid dissemination of COVID-19 has provoked a global crisis in public health. COVID-19 has been reported to cause sepsis, severe infections in the respiratory tract, multiple organ failure, and pulmonary fibrosis, all of which might induce mortality. Although several vaccines for COVID-19 are currently being administered worldwide, the COVID-19 pandemic is not yet effectively under control. Therefore, novel therapeutic agents to eradicate the cause of the disease and/or manage the clinical symptoms of COVID-19 should be developed to effectively regulate the current pandemic. In this review, we discuss the possibility of managing the clinical symptoms of COVID-19 using natural products derived from medicinal plants used for controlling pulmonary inflammatory diseases in folk medicine. Diverse natural products have been reported to exert potential antiviral effects in vitro by affecting viral replication, entry into host cells, assembly in host cells, and release. However, the in vivo antiviral effects and clinical antiviral efficacies of these natural products against SARS-CoV-2 have not been successfully proven to date. Thus, these properties need to be elucidated through further investigations, including randomized clinical trials, in order to develop optimal and ideal therapeutic candidates for COVID-19.

Nanoparticles-induced Alignment in Liquid Crystal Cells

  • Jeng, Shie-Chang;Kuo, Chia-Wei;Lin, Yan-Rung;Wang, Hsing-Lung;Liao, Chi-Chang;Yang, Chen-Yu;Hwang, Shug-June
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.1077-1079
    • /
    • 2008
  • Nanoparticles-induced vertical alignment (NIVA) in the liquid crystal (LC) devices was observed and has been applied successfully on fabricating the hybrid-aligned nematic LC cells and guest-host LC cells. In this talk, we will discuss the characteristics of the electric and optical properties of NIVA-LC cells with different dopant concentrations and demonstrate that nanoparticles can be spin-coated on the substrate at a low temperature.

  • PDF

Binding of Tp92 homolog of Treponema denticola to fibronectin and epithelial cells

  • Jun, Hye-Kyoung;Lee, Sung-Hoon;Lee, Hae-Ri;Choi, Bong-Kyu
    • International Journal of Oral Biology
    • /
    • 제33권2호
    • /
    • pp.45-50
    • /
    • 2008
  • Treponema denticola is the best studied oral spirochete and numerous studies have shown that it is strongly associated with periodontitis and expresses several putative virulence factors. In this study, we report on a surface protein of T. denticola, Td92, which is homologous to Tp92 of Treponema pallidum, an agent of syphilis. Immunofluorescence assay and immunogold labeling with anti-Td92 Ab revealed that Td92 had surface-exposed epitopes. And Td92 was capable of binding to fibronectin and KB cells, an oral epithelial cell line. In addition, Td92 could enter the KB cells. These results indicate that Td92 is a fibronectin-binding protein which can bind to and internalize into the host cells, facilitating the virulence of T. denticola.