• 제목/요약/키워드: horticultural traits

검색결과 108건 처리시간 0.028초

Development of an ISSR-Derived SCAR Marker in Korean Ginseng Cultivars (Panax ginseng C. A. Meyer)

  • Lee, Jei-Wan;Kim, Young-Chang;Jo, Ick-Hyun;Seo, A-Yeon;Lee, Jeong-Hoon;Kim, Ok-Tae;Hyun, Dong-Yun;Cha, Seon-Woo;Bang, Kyong-Hwan;Cho, Joon-Hyeong
    • Journal of Ginseng Research
    • /
    • 제35권1호
    • /
    • pp.52-59
    • /
    • 2011
  • Recently, new ginseng cultivars having superior agricultural traits have been developed in Korea. For newly developed plant cultivars, the identification of distinctiveness is very important factors not only in plant cultivar management but also in breeding programs. Thus, eighty-five inter simple sequence repeat (ISSR) primers were applied to detect polymorphisms among six major Korean ginseng cultivars and two foreign ginsengs. A total of 197 polymorphic bands with an average 5.8 polymorphic bands and 2.9 banding patterns per assay unit across six Korean ginseng cultivars and foreign ginsengs from 236 amplified ISSR loci with an average 6.9 loci per assay unit were generated by 34 out of 85 ISSR primers. Three species of Panax ginseng including the Korean ginseng cultivars, P. quinquefolius, and P. notoginseng, could be readily discriminated using most tested primers. UBC-821, UBC-868, and UBC-878 generated polymorphic bands among the six Korean ginseng cultivars, and could distinguish them from foreign ginsengs. Sequence characterized amplified region (SCAR) marker system was introduced in order to increase the reproducibility of the polymorphism. One SCAR marker, PgI821C650, was successfully converted from the randomly amplified polymorphism by UBC-821. It showed the expected dominant polymorphism among ginseng samples. In addition, the specific polymorphism for Sunwon was generated by treating Taq I restriction enzyme to polymerase chain reaction products of PgI821C650. These results will serve as useful DNA markers for identification of Korean ginseng, especially Sunwon cultivar, seed management, and molecular breeding program supplemented with marker-assisted selection.

RAPD법을 이용한 고구마 품종간 유연관계 평가 (Evaluation of Genetic Relationship among Sweetpotato Cultivars Using Randomly Amplified Polymorphic DNA (RAPD) Analysis)

  • 이긍표;박권우
    • 원예과학기술지
    • /
    • 제16권1호
    • /
    • pp.18-20
    • /
    • 1998
  • 본 실험은 RAPD (random amplified polymorphic DNA)를 이용하여 국내에서 육성된 13개 품종의 고구마 (Ipomoea batatas)를 대상으로 유연관계분류 및 품종구분 가능성을 탐색하였다. RAPD를 이용하여 고구마 품종을 비가중산술법(UPGMA)으로 3개의 그룹표로 분류할 수 있었는데 그룹 I은 '충승 100호'로, 그룹 II는 '은미', '생미', '수원147호'와 '율미', 그룹 III는 '홍미', '진미', '관동95', '선미', '원미', '신율미', '증미', '풍미'로 나뉘어졌다. RAPD를 이용한 분류 결과는 대체로 육성모부본의 유전자형과 일치함을 나타내고 있고, 상이한 점은 영양계의 변이에 의한 것으로 추측된다, 앞으로 이러한 marker system을 이용하여 육종시 조기에 원하는 형질을 갖는 계통을 선별할 수 있을 것이며 이에 따라 다양한 고구마 품종의 육종프로그램과 품종판별에 유용하게 이용될 수 있을 것으로 사료된다.

  • PDF

고온성 백색 양송이 신품종 '하담' 육성 (Breeding a new white button mushroom cultivar 'Hadam' to produce mushrooms at high temperature)

  • 오연이;오민지;임지훈;장갑열
    • 한국버섯학회지
    • /
    • 제18권3호
    • /
    • pp.214-220
    • /
    • 2020
  • 기후변화에 대비하여 고온성 양송이 백색 품종을 육성한 결과는 다음과 같다. 모본은 KMCC00540, KMCC00591, KMCC00643을 선발하였고, ISSR과 SSR마커로 각각 동핵균주를 선발하여 교잡하였다. 선발 교잡주를 고온 20~25℃, 습도 80% 이상에서 3반복으로 재배하여 농업적 형질과 자실체 특성의 변이가 가장 적은 것은 Abs4-2016-121 계통이었다. 이 계통은 KMCC00000와 KMCC0000를 교잡한 계통이며, 경주와 부여 농가에서 현장실증시험결과 Abs4-2016-121 계통이 자실체 경도가 높으며 고온에서 갓개열이 지연되어 고온성 품종 '하담'으로 육성하였다.

Phenotypic characterization of pre-harvest sprouting resistance mutants generated by the CRISPR/Cas9-geminiviral replicon system in rice

  • Jong Hee Kim;Jihyeon Yu;Jin Young Kim;Yong Jin Park;Sangsu Bae;Kwon Kyoo Kang;Yu Jin Jung
    • BMB Reports
    • /
    • 제57권2호
    • /
    • pp.79-85
    • /
    • 2024
  • Pre-harvest sprouting is a critical phenomenon involving germination of seeds in the mother plant before harvest under relative humid conditions and reduced dormancy. In this paper, we generated HDR mutant lines with one region SNP (C/T) and an insertion of 6 bp (GGT/GGTGGCGGC) in OsERF1 genes for pre-harvest sprouting (PHS) resistance using CRISPR/Cas9 and a geminiviral replicon system. The incidence of HDR was 2.6% in transformed calli. T1 seeds were harvested from 12 HDR-induced calli and named ERF1-hdr line. Molecular stability, key agronomic properties, physiological properties, and biochemical properties of target genes in the ERF1-hdr line were investigated for three years. The ERF1-hdr line showed significantly enhanced seed dormancy and pre-harvest sprouting resistance. qRT-PCR analysis suggested that enhanced ABA signaling resulted in a stronger phenotype of PHS resistance. These results indicate that efficient HDR can be achieved through SNP/InDel replacement using a single and modular configuration applicable to different rice targets and other crops. This work demonstrates the potential to replace all genes with elite alleles within one generation and greatly expands our ability to improve agriculturally important traits.

Single Nucleotide Polymorphisms linked to the SlMYB12 Gene that Controls Fruit Peel Color in Domesticated Tomatoes (Solanum lycopersicum L.)

  • Kim, Bichsaem;Kim, Nahui;Kang, Jumsoon;Choi, Youngwhan;Sim, Sung-Chur;Min, Sung Ran;Park, Younghoon
    • 원예과학기술지
    • /
    • 제33권4호
    • /
    • pp.566-574
    • /
    • 2015
  • Yellow or transparent fruit peel color is caused by the accumulation or lack of naringenin chalcone (NG, C) in fruit peel and determines the red or pink appearance of tomato fruit, respectively. NGC biosynthesis is regulated by the SlMYB12 gene of the Y locus on chromosome 1, and DNA markers derived from SlMYB12 would be useful for marker-assisted selection (MAS) of tomato fruit color. To develop a gene-based marker, 4.9 kb of the SlMYB12 gene including a potential promoter region was sequenced from the red-fruited (YY) line 'FCR' and pink-fruited (yy) line 'FCP'. Sequence alignment of these SlMYB12 alleles revealed no sequence variations between 'FCR' and 'FCP'. To identify SlMYB12-linked single nucleotide polymorphisms (SNPs), 'FCR' and 'FCP' were genotyped using a SolCAP Tomato SNP array and CAPS markers (CAPS-456, 531, 13762, and 38123) were developed from the four SNPs (solcap_snp_sl_456, 531, 13762, and 38123) most closely flanking the SlMYB12. These CAPS markers were mapped using $F_2$ plants derived from 'FCR' ${\times}$ 'FCP'. The map positions of the fruit peel color locus (Y) were CAPS-13762 (0 cM) - 456 (11.09 cM) - Y (15.71 cM) - 38123 (17.82 cM) - 531 (30.86 cM), and the DNA sequence of SlMYB12 was physically anchored in the middle of CAPS-456 and CAPS-38123, indicating that fruit peel color in domesticated tomato is controlled by SlMYB12. A total of 64 SolCAP tomato germplasms were evaluated for their fruit peel color and SNPs located between solcap_snp_sl_456 and 38123. Seven SNPs that were detected in this interval were highly conserved for pink-fruited accessions and specific to transparent fruit peel traits, as depicted by a phenetic tree of 64 accessions based on the seven SNPs.

Review on the development of virus resistant plants in Alstroemeria

  • Park, Tae-Ho;Han, In-Song;Kim, Jong-Bo
    • Journal of Plant Biotechnology
    • /
    • 제37권4호
    • /
    • pp.370-378
    • /
    • 2010
  • This review describes the stratagies of development of virus-resistant Alstroemeria plants using the genetic modification system. Despite of increasing of its importance in cut flower market, improvements of some horticultuirally important traits such as fragrance, long vase-life, virus resistance and tolerance against abiotic stresses are lack of the breeding program in Alstroemeria. Of these traits, virus-resistance is quite difficult to develop in Alstroemeria plants due to the limitations of genetic variation in the existed germplasm. To extend the genetic variation, plant biotechnological techniques such as genetic transformation and tissue culture should be combined to develop virus-resistant line in Alstroemeria. In this review, several strategies for the generation of virus-resistance by using natural resistance genes, pathogen-derived genes and other sources including pathogen-derived proteins, virus-specific antibodies and ribosome-inactivating proteins are presented. Also, brief histories of breeding, tissue culture, and transformation system in Alstroemeria plants are described to inderstand of the application of transgenic approach for the development of virus-resistance in Alstroemeria species.

Construction of an Analysis System Using Digital Breeding Technology for the Selection of Capsicum annuum

  • Donghyun Jeon;Sehyun Choi;Yuna Kang;Changsoo Kim
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.233-233
    • /
    • 2022
  • As the world's population grows and food needs diversify, the demand for horticultural crops for beneficial traits is increasing. In order to meet this demand, it is necessary to develop suitable cultivars and breeding methods accordingly. Breeding methods have changed over time. With the recent development of sequencing technology, the concept of genomic selection (GS) has emerged as large-scale genome information can be used. GS shows good predictive ability even for quantitative traits by using various markers, breaking away from the limitations of Marker Assisted Selection (MAS). Moreover, GS using machine learning (ML) and deep learning (DL) has been studied recently. In this study, we aim to build a system that selects phenotype-related markers using the genomic information of the pepper population and trains a genomic selection model to select individuals from the validation population. We plan to establish an optimal genome wide association analysis model by comparing and analyzing five models. Validation of molecular markers by applying linkage markers discovered through genome wide association analysis to breeding populations. Finally, we plan to establish an optimal genome selection model by comparing and analyzing 12 genome selection models. Then We will use the genome selection model of the learning group in the breeding group to verify the prediction accuracy and discover a prediction model.

  • PDF

High-frequency Plant Regeneration from Cultured Flower Bud Receptacles of Allium hookeri L.

  • Koo, Ja Choon
    • 원예과학기술지
    • /
    • 제32권5호
    • /
    • pp.694-701
    • /
    • 2014
  • Allium hookeri L. (Alliaceae family) is an important ethnomedicinal plant native to the Himalayan region of Asia. The aim of this research was to establish a high-frequency plant regeneration system for in vitro propagation of A. hookeri. Among the tissue types examined, receptacle explants derived from immature flower buds showed the highest regeneration rate of shoots ($93.33{\pm}4.63%$), roots ($76.67{\pm}7.85%$), and calli ($80.00{\pm}7.43%$) when cultured on Gamborg B5 (B5) medium containing $10{\mu}M$ 6-benzylaminopurine (BA) + $1{\mu}M$ naphthalene acetic acid (NAA), $0.5{\mu}M$ BA + $5{\mu}M$ NAA, and $1{\mu}M$ BA + $10{\mu}M$ NAA, respectively. Shoot multiplication was superior when cultured in liquid rather than on solid medium and relatively high concentrations of BA, ranging from 5 to $10{\mu}M$. Efficient bulblet formation following root induction from shoot clumps was achieved with culture in liquid B5 medium containing 7% (w/v) sucrose. Regenerated bulblets were successfully acclimatized to ex vitro conditions with a greater than 95% survival rate. By this method, a maximum of 62 plantlets per receptacle could be propagated within 9 weeks of initial culture. The in vitro propagation system established in this study will promote A. hookeri biotechnology, including large-scale production of healthy and aseptic clones, preserving parental genotypes with desirable traits, and genetic manipulation to enhance medicinal value.

First Report of the Ash Dieback Pathogen Hymenoscyphus fraxineus in Korea

  • Han, Jae-Gu;Shrestha, Bhushan;Hosoya, Tsuyoshi;Lee, Kang-Hyo;Sung, Gi-Ho;Shin, Hyeon-Dong
    • Mycobiology
    • /
    • 제42권4호
    • /
    • pp.391-396
    • /
    • 2014
  • In the past two decades, European ash trees (Fraxinus spp.) have been severely damaged due to ash dieback disease, which is caused by the fungal species Hymenoscyphus fraxineus (Chalara fraxinea in the anamorphic stage). Recent molecular phylogenetic and population genetic studies have suggested that this fungus has been introduced from Asia to Europe. During a fungal survey in Korea, H. fraxineus-like apothecia were collected from fallen leaves, rachises, and petioles of Korean ash and Manchurian ash trees. The morphological and ecological traits of these materials are described with the internal transcribed spacer rDNA sequence comparison of H. fraxineus strains collected from Korea, China and Japan.

황육계 복숭아 품종 선발용 SNP 마커 (SNP Markers Useful for the Selection of Yellow-fleshed Peach Cultivar)

  • 김세희;권정현;조강희;신일섭;전지혜;조상윤
    • 한국자원식물학회지
    • /
    • 제34권5호
    • /
    • pp.443-450
    • /
    • 2021
  • 복숭아 과육색은 상업적으로 중요한 분류 기준이며 영양 품질에 영향을 미친다. 카로티노이드가 다량 함유된 새로운 황색 과육 품종을 육성하기 위해서는 많은 교배 조합과 세대가 진전되어야 한다. 따라서 육종 효율을 높이기 위해서는 경제적으로 중요한 형질을 가진 교배 집단과 유전자원에 적용할 조기 선발마커를 개발할 필요가 있다. 과육색이 다르게 발현되는 복숭아 품종의 유전자 발현을 비교하기 위해 2개의 cDNA library를 제작하였다. 황색 과육 품종인 '장호원황도'와 백색 과육 품종인 '미백도'의 유전자 발현 차이를 보기 위해 차세대 염기서열 분석 기술을 사용하였고 두 품종으로부터 얻은 EST의 염기서열을 결정하고 기존에 보고된 유전자와의 상동성을 분석하였다. EST 데이터로부터 황색 과육 품종 17개와 백색 과육 품종 22개를 구분할 수 있는 2종의 SNP 마커(SNP ID, ppa002847m:cds와 SNP ID, ppa002540m:cds)를 선발하였고, HRM 방법으로 분석하였다. 본 연구 결과는 복숭아 육종에 유용하게 사용할 수 있으며 복숭아 품종의 다양한 색 변화에 관한 분자 기작 연구에 좋은 참고자료가 될 수 있을 것이다.